

Dreamers. Thinkers. Doers.

THE UNIVERSITY OF **MEMPHIS**.

When, Where, and How Much to Invest for Enhancing Transportation Network Performance: Insights to Augment Decision Making

Presented by:

Sabya Mishra^a, Mihalis M. Golias^a, and Timothy Welch^b ^a University of Memphis ^b Georgia Institute of Technology

> 15th TRB National Planning Applications Conference May 19, 2015

Motivation (1)

- State DOTs must allocate available budget to set of projects
- Divisions within DOT focus on specific MOE
 - Congestion
 - Consumer surplus
 - Safety
 - Air Quality
- Focus in one MOE may impact other

Motivation (2)

- Budget is often limited
- Empirical models does not work (lack of behavioral component)
- Need to consider user behavior
- Single year versus multi-year investment
- MOEs are often conflicting

Motivation (3)

• Key question remains

"When, where and how much do we need to invest such that overall goal of a transportation agency is satisfied"

"Would it be prudent to invest now or wait"

Background

- The problem is multi-objective
- Considers multiple players
 - Decision makers (leaders)
 - Users (followers)
- Stackelberg's game
- Problems are often non-linear and difficult to solve

Dreamers. Thinkers. Doers.

Purpose of Project

- Produce a method of prioritizing projects
 - Consider Total System Travel Time (TSTT) performance measure
- Allocate the budget to priority links
- Provide State DOTs with a decision making tool

Methodology

- Bi-Level Optimization
- Planners
 - Upper Level Problem (ULP)
 - Minimize Total System Travel Time (TSTT)
- Users
 - Lower Level Problem (LLP)
 - Traffic Assignment (UE)

Data Required

- Number of Links in the network
 - Capacity
 - Length
 - Free Flow Travel Time
 - Alpha and Beta parameters
 - Connecting Nodes
- O/D Matrix
- Budget

Formulation

Upper Level problem (ULP)

Objective Function :

Minimize TSTT =
$$\sum_{a} x_{a} t_{a} (x_{a}, y_{a})$$

Subject to:

$$\sum_{\forall_{a}} g_{a}(y_{a}) \leq B$$

$$0 \leq y_{a} \leq c_{a} : \forall a \in A$$

Where:

В

TSTT : Total System Travel Time

 x_a : Flow for link a

- y_a : Capacity expansion for link 'a' (nonnegative real value)
- t_a : Travel time for link a
- $t_a(x_a, y_a)$: Travel cost on link *a* as a function of flow and capacity expansion
- $g_a(y_a)$: improvement cost function for link 'a'
 - : Budget (nonnegative real value)

Formulation

Lower Level problem (LLP)

Minimize TT =
$$\sum_{a \in A} \int_0^{x_a} t_a(x_a, y_a) dx$$

Subject to:

$$\begin{split} q_{ij} &= \sum_{k \in k^{ij}} f_k^{ij} \: \forall (i,j) \in IJ \\ x_a &= \sum_{(i,j) \in IJ} \sum_{k \in K^{ij}} \delta_{ak}^{ij} f_k^{ij}, \ \forall_a \in A \\ f_k^{ij} &\geq 0, \ \forall_k \in k^{ij}, \qquad \forall (i,j) \in IJ, \\ q_{ij} &\geq 0, \ \forall (i,j) \in IJ \end{split}$$

Dreamers. Thinkers. Doers.

THE UNIVERSITY OF

Notations

C_a	:	The capacity for link <i>a</i>
f_{ij}^r	:	Flow on path <i>r</i> , connecting each Origin-Destination (O-D) pair (<i>i</i> - <i>j</i>)
q_{ij}	:	Demand between each Origin-Destination (O-D) pair (<i>i</i> - <i>j</i>)
t_a	:	Travel time for link a
$t_a(x_a, y_a)$:	Travel cost on link <i>a</i> as a function of flow and capacity expansion
x_a	:	Flow for link <i>a</i>
$lpha_a$:	Constant, varying by facility type (BPR function)
β_a	:	Constant, varying by facility type (BPR function)
$\delta^r_{a,ij}$:	binary variable 0,1 {1,if link $a \in A$ is on path $k \in k^{ij:0}$, otherwise}
to	:	Free flow time on link a
\mathcal{Y}_a	:	Capacity expansion for link 'a' (nonnegative real value)

Kth best algorithm for bi-level optimization

- Iteratively solves both upper and lower level problems
- Both upper and lower level can be solved using exact algorithms
- Often provides better solution than evolutionary algorithms (Karoonsoontawong & Waller 2006)
- Application:
 - Static traffic assignment
 - Dynamic traffic assignment
 - Other bi-level problem domains

Solution Approach

Dreamers. Thinkers. Doers.

Slope-based Path Shift-propensity Algorithm (SPSA)

- Algorithm Characteristics:
 - Combines merits of simultaneous and sequential approach
 - Updates path sets for all O-D pair simultaneously
 - partially tackles the problem of order bias
 - Equilibrates one O-D pair at a time
 - leads to faster convergence
 - Incorporates behavioral realism in the flow update process
 - Convergence is theoretically proven
 - Simplicity of execution for easy deployment in practice
- Developed by Kumar and Peeta (2014)

Dreamers. Thinkers. Doers.

Particle swarm (pswarm) algorithm

- Simulate behavior of particles that attempt to optimally explore some given solution space
- Population of particles is called **swarm**
- A particle flies in the solution space in search of optimal position
- Particle adjust its position and velocity using its own as well as other particles' experiences in the population
 - Combines the local search (own experience) with global search (population experience)
- Known to perform better than other global optimization methods such as genetic algorithm

Dreamers. Thinkers. Doers.

Test Network 1

$t_a(x_a, y_a) = A_a + B_a \left(\frac{x_a}{C_a + y_a}\right)^4$									
	TSTT(y) =	$\sum_{a} (t_a(x_a, y_a$). $x_a + 1.5d$	$a y_a^2$					
Arc a	A _a	B _a	C _a	d _a					
1	4	0.60	40	2					
2	6	0.90	40	2					
3	2	0.30	60	1					
4	5	0.75	40	2					
5	3	0.45	40	2					

Comparison of Results

	Case	MINOS	Hooke- Jeeves (H-J)	EDO	GA	Current Study		Names of	Sources	
1	Demand =100							neuristics		
	У ₁	1.34	1.25	1.31	1.33	1.33	GA	Genetic	Mathew	
	У ₂	1.21	1.20	1.19	1.22	1.21		Δlgorithm	(2009)	
	У ₃	0.00	0.00	0.06	0.02	0.00			(2007)	
	y ₄	0.97	0.95	0.94	0.96	0.96				
	У ₅	1.10	1.10	1.06	1.10	1.10				
	Z	1200.58	1200.61	1200.64	1200.58	1200.58	H-J	Hooke-Jeeves	Abdulaal and	
2	Demand =150							algorithm	LeBlanc	
	y ₁	6.05	5.95	5.98	6.08	6.06		argorithm	(1979)	
	У ₂	5.47	5.64	5.52	5.51	5.46				
	y ₃	0.00	0.00	0.02	0.00	0.00	EDO	Equilibrium	Suwansirikul	
	У ₄	4.64	4.60	4.61	4.65	4.64		Decomposed	et al. (1987)	
	У ₅	5.27	5.20	5.27	5.27	5.27		Ontimization	et un (1707)	
	Z	3156.21	3156.38	3156.24	3156.23	3156.21		(Polyana soarch)		
3	Demand =200							(DOLZANO SEALCH)		
	У ₁	12.98	13.00	12.86	13.04	12.98	MINOS	Modular In-core	Suwansirikul	
	y ₂	11.73	11.75	12.02	11.73	11.73		Non linear	et al (1987)	
	y ₃	0.00	0.00	0.02	0.01	0.00		Systom		
	У ₄	10.34	10.25	10.33	10.33	10.34		System		
	У ₅	11.74	11.75	11.77	11.78	11.74				
	Z	7086.12	7086.21	7086.45	7086.16	7086.11				
4	Demand =300									
	У ₁	28.45	28.44	28.11	28.48	28.47				
	y ₂	25.73	25.75	26.03	25.82	25.71			1	
	y ₃	0.00	0.00	0.01	0.08	0.00				
	У ₄	23.40	23.44	23.39	23.39	23.41				
	У ₅	26.57	26.56	26.58	26.48	26.55				
	Z	21209.90	21209.91	21210.54	21210.06	21209.90				

Test Network 2

candidate links are marked by red arrow

Dreamers. Thinkers. Doers.

LL and UL objective functions

Dissimilarity of link flow vectors

Comparison of Results

Comparison of Results for Sioux Falls Network

Case	H-J	EDO	SA	SAB	GP	CG	QNew	РТ	GA	Current Study
y16	4.8	4.59	5.38	5.74	4.87	4.77	5.3	5.02	5.17	5.13
y17	1.2	1.52	2.26	5.72	4.89	4.86	5.05	5.22	2.94	1.35
y19	4.8	5.45	5.5	4.96	1.87	3.07	2.44	1.83	4.72	5.13
y20	0.8	2.33	2.01	4.96	1.53	2.68	2.54	1.57	1.76	1.32
y25	2	1.27	2.64	5.51	2.72	2.84	3.93	2.79	2.39	2.98
y26	2.6	2.33	2.47	5.52	2.71	2.98	4.09	2.66	2.91	2.98
y29	4.8	0.41	4.54	5.8	6.25	5.68	4.35	6.19	2.92	4.89
y39	4.4	4.59	4.45	5.59	5.03	4.27	5.24	4.96	5.99	4.45
y48	4.8	2.71	4.21	5.84	3.76	4.4	4.77	4.07	3.63	4.97
y74	4.4	2.71	4.67	5.87	3.57	5.52	4.02	3.92	4.43	4.4
Zy	82.5	84.5	81.89	84.38	84.15	84.86	83.19	84.19	81.74	80.99

- GPGradient Projection methodCGConjugate Gradient projection method
- CG Conjugate Gradient projection method
- QNEW Quasi-NEWton projection method
- PT PARTAN version of gradient projection method

Dreamers. Thinkers. Doers.

Comparison of Results

Comparison of Results for Sioux Falls Network for different demand level

									Current
Demand Scenario	SAB	GP	CG	QNew	PT	EDO	ΙΟΑ	GA	Study
0.8	51.76	48.38	48.78	48.84	48.81	49.51	53.58	48.92	48.15
ltr.	14	10	3	4	9	7	28	59	29
1	84.21	82.71	82.53	83.07	82.53	83.57	87.34	81.74	80.99
ltr.	11	9	6	4	7	12	31	77	35
1.2	144.86	141.53	141.04	141.62	142.27	149.39	150.99	137.92	135.80
ltr.	9	11	10	7	9	12	31	67	36
1.4	247.8	246.04	246.04	242.74	241.08	253.39	279.39	232.76	229.22
ltr.	15	9	6	5	7	17	16	78	36
1.6	452.01	433.64	408.45	409.04	431.11	427.56	475.08	390.54	380.91
ltr.	14	9	9	9	11	19	40	83	40

GA Genetic Algorithm

GP Gradient Projection method

CG Conjugate Gradient projection method

QNEW | Quasi-NEWton projection method

PT PARTAN version of gradient projection method

THE UNIVERSITY OF

Dreamers. Thinkers. Doers.

Application

Network	Nodes	Links	Zones	O-D pairs with non- zero demand
Anaheim	416	914	38	1,416
Chicago Sketch	933	2,950	387	93,135
Washington DC	1,752	4,420	225	50,625
Atlanta	1,102	2,295	144	20,736

Dreamers. Thinkers. Doers.

THE UNIVERSITY OF

Anaheim

LL and UL objective functions

Dissimilarity of link flow vectors

Anaheim Investment Scenarios

Dreamers. Thinkers. Doers.

Chicago Sketch

LL and UL objective functions

Dissimilarity of link flow vectors

Chicago Sketch Investment Scenarios

Chicago Investment Scenarios

Budget= \$300 million

Budget= \$525 million

www.memphis.edu

5000.1 - 7500.0
7500.1 - 10000.0
10000.1 - 12500.0

- - - - - -

Dreamers. Thinkers. Doers.

Montgomery County and Atlanta

Montgomery County Investment Scenarios

Atlanta Investment Scenarios

Summary and Conclusion

- In the investment decision making problem
 - One player (one upper level objective function)
 - One year analysis period
 - Kth best algorithm
 - Iterative approach between UL and LL
 - Compared to results from literature
 - Applied the procedure in real life networks

Dreamers. Thinkers. Doers.

THE UNIVERSITY OF MEMPHIS.

Limitations and Future Research

- Limitations
 - Kth best algorithm may not guarantee optimality
 - Computational time
- Future research
 - Converting single level
 - Considerations of multi year, multi objectives
 - Developing economic performance measures

Q&A

Contact

Sabyasachee (Sabya) Mishra, Ph.D., P.E Assistant Professor Department of Civil Engineering University of Memphis E-mail: smishra3@memphis.edu

