
Using Error Distributions with Model Output to 

Acknowledge Prediction Uncertainty: Results 

using Travel Demand and Transit Flow Models

Mark R. McCorda,b, Serkan Bicicia and Rabi G. Mishalania

aCivil, Environmental & Geodetic Engineering 
bCity & Regional Planning

The Ohio State University, Columbus, OH

15th TRB National Transportation

Planning Applications Conference

Atlantic City, New Jersey

May 20, 2015

1



Uncertainty in Transportation 
Demand and Flow Models

Postulates
• There is uncertainty in predictions/forecasts: “Models are off”

• It is better to recognize than ignore the uncertainty

Practice
• Transportation demand/flow models generally produce point 

estimates

Propose and validate an approach to 
“add” uncertainty to model point estimates
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Recognizing Differences between 
Models and the “Truth”

• Empirical-based studies
• Measures of difference (e.g., RMSE) to compare models

• Do not provide measure for prediction uncertainty

• Theoretical/Numerical (Monte Carlo)–based studies 
• Provide measures for prediction uncertainty based on distributions 

of inputs or parameters

• Do not account for model/assumption uncertainty

• This approach
• Use differences between past model-based and observed values to 

determine distribution of true value, conditional on model output
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Developing Uncertainty Distributions
Difference between Model Values and Observations: ∆

* Ferdous et al. (2011) Comparison of Four Step Versus Tour-Based Models 
in Predicting Travel Behavior Before and After Transportation System Changes

1990 Link i

Volume

MORPC Model Output (𝑀𝑖) : 26,844 *

Observation (𝑇𝑖) : 29,340 *

∆𝑖 = 𝑀𝑖 − 𝑇𝑖 -2,496 
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MORPC Network

Link i



∆1 = -667

∆𝑗 = 1,707

∆𝑖 = -2,496

∆𝑘 = -3,244

1041 Segments in Ferdous et al.
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Determining Difference (Δ), Bias (b), 
and Error (ε) Distributions



Bias: b = - E[Δ] = -1,155

Unbiased Error

Δ =  M - Tobs

Differences Between 
Models and Observations
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Determining Difference (Δ), Bias (b),
and Error (ε) Distributions

ε = Δ + b 
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Year 1

Determining Bias Distribution

Year Y

𝑏1= - E[∆1] 𝑏𝑦= - E[∆𝑦]

.    .    .     .     .      .    .    .   . 

Bias Distribution

7

F
 [
Δ

1
]

F
 [
b
]

F
 [
Δ

y ]

Δ1 [Veh] Δy [Veh]

b [Veh]



Model for 2005 
𝑀𝑖 = 58,071

Bias

𝐹𝑏(𝑖)(b) 

=>
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Prediction/Forecast on Link i: 𝐹𝑖(𝑇𝑖|𝑀𝑖)

𝐹𝑏 and 𝐹𝜀 from 1990 and 2000

Prediction for 2005
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• Use subset of model/observation data to estimate bias and error 

distribution

• Use estimated bias and error distributions with remaining model 

output to produce uncertainty in model predictions/forecasts

• Use observations for remaining data (“known outcomes of 

prediction/forecast”) with modeled uncertainty to determine 

empirical distributions of probabilities of observations

• Compare empirical distributions to theoretical distributions

Validation Study
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Model for 2005 
𝑀𝑖 = 58,071

Bias

𝐹𝑏(𝑖)(b) 

=>
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Prediction/Forecast on Link i: 𝐹𝑖(𝑇𝑖|𝑀𝑖)

𝐹𝑏 and 𝐹𝜀 from 1990 and 2000

Prediction for 2005

Link i

Error
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𝐹𝑖 62,025 =0.60

𝑇obs
𝑖= 62,025
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Validation Logic: Probabilistic Forecast 
of Observation Tobs on Link i

In 2005 
Model link i: 𝑀𝑖 = 58,071

Observation link i: Tobs
𝑖 = 62,025
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Tobs
j= 35,860

𝐹𝑗 35,860 =0.62
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Tj [Veh]

In 2005 
Model link j: 𝑀𝑗 = 30,998

Observation link j: Tobs
𝑗 = 35,860
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𝐹𝑘 54,052 =0.12
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Tobs
k= 54,052

Tk [Veh]

In 2005 
Model link k: 𝑀𝑘 = 59,050

Observation link k: Tobs
𝑘 = 54,025
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𝐹𝑘 𝑇𝑜
𝑘

=0.12
𝐹𝑖 𝑇

𝑜
𝑖

=0.60

𝐹𝑗 𝑇𝑜
𝑗

=0.62
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F 𝑇𝑜𝑏𝑠

Monte Carlo Logic:
Well-calibrated uncertainty should 

produce points around 45o line

Metrics of discrepancy w/ 45o line
• AAD: |Avg. Dif. (450, pts.)|

• MD: |Max. Dif. (450, pts.)|

• Area (450, pts.)

Larger metric values imply 

poorer empirical distributions
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• Link volumes from traffic assignment
• Mid-Ohio Regional Planning Commission model outputs and observations

• Values from Ferdous et al. (2011): Tour-based model 

• Bus passenger OD (B2A) flows from estimations based on boarding 
and alighting data

• The Ohio State University Campus Transit Lab OD flow observations

(http://transitlab.osu.edu/campus-transit-lab)

• Boarding and  alighting data from observations used with Iterative 
Proportional Fitting (IPF) method to produce model estimates

Empirical Applications
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• Model/Observation years:           
1990, 2000, 2005

• Calibrate using two years to 
predict third year: All (3) 
combinations

• Calibrate one bias and one error 
distribution using all segments: 
“Aggregated Calibration”

• Pool results
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AAD: 0.058

MD  : 0.130

Area: 0.057
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Aggregated Calibration 
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Traffic Assignment Validation 
Using Ferdous et al. MORPC Data
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Traffic Assignment Validation
Aggregated Calibration for Segmented Predictions

Freeway

Minor Road Local Road

Major Road

F Tobs
i

F Tobs
i

F Tobs
i

F Tobs
i

AAD: 0.087

MD  : 0.208

Area: 0.086

AAD: 0.088

MD  : 0.178

Area: 0.090

AAD: 0.031

MD  : 0.061

Area: 0.030
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Area: 0.133
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Aggregated Calibration
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Segmented Calibrations 
by Functional Class

AAD: 0.058

MD  : 0.130

Area: 0.057

AAD: 0.034

MD  : 0.091

Area: 0.034
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Traffic Assignment Validation
Aggregated vs. Segmented (Bias and Error) Calibration

Calibrating Bias and Error Distributions for Each Functional Class Improves Results



• Link volumes from traffic assignment
• Mid-Ohio Regional Planning Commission model outputs and observations

• Values from Ferdous et al. (2011): Tour-based model 

• Bus passenger OD (B2A) flows from estimations based on boarding 
and alighting data

• The Ohio State University Campus Transit Lab OD flow observations

(http://transitlab.osu.edu/campus-transit-lab)

• Boarding and  alighting observations for six academic terms 

• Model output using Iterative Proportional Fitting (IPF) method

Empirical Applications
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AAD: 0.043

MD  : 0.142

Area: 0.045
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AAD: 0.050

MD  : 0.146

Area: 0.052

Bus OD Flow
Aggregated vs. Segmented (Bias and Error) Calibration

Calibrating Bias and Error Distributions for High/Low Volume Cells Improves Results

Aggregated Calibration Segmented Calibrations for High 
and Low Volume OD Cells



Conclusions

• Preliminary validation studies indicate the approach is capturing 
uncertainty appropriately

• Additional studies needed to refine approach and produce more robust 
validation studies (“spin-off” research investigations also envisioned)

• Request for agency model validation data
mccord.2@osu.edu, mishalani.1@osu.edu, bicici.1@osu.edu
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The views, opinions, findings, and conclusions reflected in this presentation are 
the responsibility of the authors only and do not represent the official policy or 

position of USDOT, RITA, OSU , or any other entity or person.
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