A Travel Time Reliability Estimation and Valuation Approach for Transportation Planning Applications

Sabya Mishraa, Liang Tangb, Sepehr Ghaderb, Subrat Mahapatrac, and Lei Zhangb*

aUniversity of Memphis
bUniversity of Maryland College Park
cMaryland State Highway Administration
*Corresponding author

Presentation at 15th TRB Planning Applications Conference
Tuesday, May 19, 2015
Overview

- Introduction
- Literature
- Methodology
- Data
- Results and Discussion
- Conclusion and Future Research
Introduction

• Value of Travel Time (VoT) and Value of Travel Time Reliability (VoTR) are two important parameters
• VoT
 • monetary value travelers place on reducing their travel time or savings
• VoTR
 • monetary value travelers place on reducing the variability of their travel time or improving the predictability
• Key question:
 • How to incorporate reliability in transportation planning process
 • What is the valuation of reliability for transportation planning applications
 • How planning agencies can utilize reliability as a measure in the decision making process
Literature

- Performance driven reliability
 - Derived from observed data
 - Used for application purposes (congestion, delay etc.)

- Traveller’s response based reliability
 - Choice based behavior
 - Requires significant time for development

- Measures of reliability
 - 90^{th} or 95^{th} percentile travel time,
 - buffer index,
 - planning time index,
 - percent variation,
 - percent on-time arrival
 - standard deviation
Methodology

3 Step Process

- Random utility model
- Reliability and travel time relationship
- Application in planning models

Random Utility Model

1. Collect RP data or HTS
2. Obtain user socio-economic and demographic data
3. Identify mode chosen in RP data
4. Specify and develop mode choice model
5. Estimate VOTR

Observed TT Data

1. Collect TT data (Discretized time steps)
2. Define regional O-D
3. Obtain path travel time (Discretized time steps)
4. Obtain path travel time variability
5. Establish relationship between travel time and travel time reliability

Planning Model

1. Define scenarios in TDM
2. Obtain Inputs:
 - Congested scheme
 - Free flow scheme
 - Assigned link volume
 - O-D matrix
3. For each path compute TT and TTR
4. Compute difference in base and scenario cases TT and TTR
5. Obtain TT and TTR savings
6. Summarize findings at desired geographic level
Household Travel Survey

- Survey conducted between May 2007 and December 2008
- Interviewed 14,365 households
- 108,110 trips were reported
Obtaining Path Travel Time

- Travel time data for various paths are obtained from INRIX TMCs
- Data obtained for the whole year in five minute increments
- Path specific travel times are aggregated to one hour
- Various reliability measures are obtained
 - Standard deviation
 - Coefficient of variation
Estimating Reliability Measure

- Obtain travel time data for a region on selected O-D pairs
- Designed path travel times
- Variation on path travel times
- Develop relationship between path travel times and variation in path travel times
Travel Demand Model

- Trip based model
- Separate component for passenger and freight
- Long and short distance aspects
- Interfaces with land use model
- Model validated per FHWA guidelines
Study Area

- Maryland Statewide Transportation Model Area

ICC and I-270 (Case Study Locations)
Reliability and Mode Choice (1)

• Regional Household Travel Survey
• The survey provides activity scheduling process
• Given a time varying network $G = (N,A)$
 • N: finite set of nodes
 • A: finite set of directed links
• The time dependent zonal demand represents
 • number of individual travelers of an O-D pair
 • at departure time t
 • From available set of modes M
Reliability and Mode Choice (2)

The choice probability for each mode can be given by

\[U(m) = \alpha TT_r^{\text{qtm}} + \beta TC_r^{\text{qtm}} + \gamma TTR_r^{\text{qtm}} + \theta_i DC_i + \]

Where,
TT = path travel time
TC = Travel cost
TTR = Travel time reliability (example: coefficient of variation)
DCi = Decision maker’s ith characteristics
\(\alpha\) = coefficient of travel time
\(\beta\) = coefficient of travel cost
\(\gamma\) = coefficient of reliability
\(\theta_i\) = coefficient of decision maker’s ith characteristic
\(\alpha / \beta\) = value of time
\(\gamma / \beta\) = value of travel time reliability
\(\gamma / \alpha\) = reliability ratio
Mode Choice Model Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant (Auto)</td>
<td>0.352</td>
<td>0.02</td>
</tr>
<tr>
<td>Veh0</td>
<td>-2.71</td>
<td>0</td>
</tr>
<tr>
<td>Veh3</td>
<td>0.645</td>
<td>0.02</td>
</tr>
<tr>
<td>Time</td>
<td>-0.009</td>
<td>0.05</td>
</tr>
<tr>
<td>Reliability</td>
<td>-0.113</td>
<td>0.01</td>
</tr>
<tr>
<td>Number of observations</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>Log likelihood at convergence</td>
<td>-328.515</td>
<td></td>
</tr>
<tr>
<td>ρ^2</td>
<td>0.089</td>
<td></td>
</tr>
</tbody>
</table>

Note: Rail is reference category

$$RR = \frac{VOR}{VOT} = \frac{\partial U}{\partial TTR} = \frac{\beta_{TTR}}{\beta_{TT}}$$

RR = -0.113/-0.009 = 13.25

Assume VoT = 14 $/hr
VoTR = 13.25*14= 185.5 $/hr

Quite High
Rationale and Reconciliation

- The estimated RR is high. Reported in literature range is 0.1 ~ 2.51

- The discrepancy is caused by following reasons
 - First, RR is estimated based on mode choice problem between auto and rail, while other modes exist in reality (bus, express bus, light rail, and non-motorized transport)
 - Second, travel cost and travel time variance of rail is not included in the utility function because of data limitation.
 - Third, travel time reliability is calculated by using Maryland specific data (variation may occur using RP or SP data)
 - Fourth, since 1h time interval is used in this study, the travel time reliability measures estimated will be much lower than using smaller time intervals, thus leads to a higher estimation of reliability ratio

- We have used RR as 0.75 considering to improve the model to obtain realistic RR in the future
Application Methodology

- Prepare necessary input file (TDM run)

 - Base Year Model Run
 - Base Year—Build
 - Base Year—No Build

 Summarize the following:
 - Congested Skim Matrix
 - Trip Matrix
 - Assigned link level volume and travel time

 - Future Year Model Run
 - Future Year—Build
 - Future Year—No Build

Incorporate L35B Findings to Obtain RR

Estimate Travel Time and Travel Time Reliability Savings
- Two Base year scenarios
- Two future year scenarios

Summarize the findings at
- System level
- County level
- Zone level
- Corridor level

Make necessary plots and summarize findings
Statewide Findings

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Savings</th>
<th>Travel Time Savings (Minutes)</th>
<th>Travel Time Savings ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel Time</td>
<td>1,434,002</td>
<td>334,552</td>
<td>334,552</td>
</tr>
<tr>
<td>Travel Time Reliability</td>
<td>144,255</td>
<td></td>
<td>33,774</td>
</tr>
<tr>
<td>Future Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel Time</td>
<td>4,512,147</td>
<td></td>
<td>1,052,682</td>
</tr>
<tr>
<td>Travel Time Reliability</td>
<td>454,639</td>
<td></td>
<td>106,214</td>
</tr>
</tbody>
</table>
Zone Level Findings

Travel Time Saving (min)
- < 1
- 1 - 5
- > 5

Travel Time Reliability Saving ($)
- < 0.25
- 0.25 - 1
- > 1
Corridor Level Savings

<table>
<thead>
<tr>
<th>Scenario</th>
<th>I-270 Travel Time (Min)</th>
<th>I-270 TT Savings (min/ Traveler)</th>
<th>I-270 TTR Savings ($ / Traveler)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NB</td>
<td>SB</td>
<td>NB</td>
</tr>
<tr>
<td>Base-No Build</td>
<td>20.2</td>
<td>23.8</td>
<td></td>
</tr>
<tr>
<td>Base-Build</td>
<td>18.6</td>
<td>21.8</td>
<td></td>
</tr>
<tr>
<td>Future-No Build</td>
<td>21.6</td>
<td>25.7</td>
<td></td>
</tr>
<tr>
<td>Future-Build</td>
<td>19.8</td>
<td>23.7</td>
<td></td>
</tr>
</tbody>
</table>

Chart:

- Peak-Direction
- Off-Peak-Direction

- Travel Time Reliability Savings ($/Traveller)
- **I-270**
- **I-95**
- **I-495**
- **I-695**
Summary and Conclusion

• The paper proposes a unified approach for determining VoTR savings in transportation planning models.
• The approach is designed for estimating the following in a planning model
 • reliability ratio,
 • VoTR,
 • benefits received from new network investments, and
 • reliability measures because of newly suggested improvements
• The approach is applied to estimate travel time reliability savings from no-build to build scenarios for both base and future year
• Reliability savings are found to be 10% of the travel time savings
Limitations and Future Explorations

• The mode choice model developed in this research is preliminary and can be improved
• More modes can be integrated in the choice model
• Reliability savings are obtained as a post processor in the planning model
• In the future, reliability can be incorporated in the travel demand mode itself for more realistic behavioral implications
Acknowledgement

- Maryland State Highway Administration
- University of Maryland National Transportation Center
- University of Memphis
Thank You

Q & A