A Travel Time Reliability Estimation and Valuation Approach for Transportation Planning Applications

Sabya Mishra ${ }^{\text {a }}$, Liang Tang ${ }^{\text {b }}$, Sepehr Ghader ${ }^{\text {b }}$, Subrat Mahapatrac ${ }^{\text {c }}$, and Lei Zhang ${ }^{\text {b* }}$
${ }^{\text {a }}$ University of Memphis
${ }^{\text {b }}$ University of Maryland College Park
${ }^{\text {cMaryland State Highway Administration }}$
*Corresponding author

Presentation at $15^{\text {th }}$ TRB Planning Applications Conference
Tuesday, May 19, 2015

Overview

- Introduction
- Literature
- Methodology
- Data
- Results and Discussion
- Conclusion and Future Research

Introduction

- Value of Travel Time (VoT) and Value of Travel Time Reliability (VoTR) are two important parameters
- VoT
- monetary value travelers place on reducing their travel time or savings
- VoTR
- monetary value travelers place on reducing the variability of their travel time or improving the predictability
- Key question:
- How to incorporate reliability in transportation planning process
- What is the valuation of reliability for transportation planning applications
- How planning agencies can utilize reliability as a measure in the decision making process

Literature

- Performance driven reliability
- Derived from observed data
- Used for application purposes (congestion, delay etc.)
- Traveller's response based reliability
- Choice based behavior
- Requires significant time for development
- Measures of reliability
- $90^{\text {th }}$ or $95^{\text {th }}$ percentile travel time,
- buffer index,
- planning time index,
- percent variation,
- percent on-time arrival
- standard deviation

Methodology

- 3 Step Process
- Random utility model
- Reliability and travel time relationship
- Application in planning models

Household Travel Survey

- Survey conducted between May 2007 and December 2008
- Interviewed 14,365 households
- 108,110 trips were reported

Obtaining Path Travel Time

- Travel time data for various paths are obtained from INRIX TMCs
- Data obtained for the whole year in five minute increments
- Path specific travel times are aggregated to one hour
- Various reliability measures are obtained
- Standard deviation
- Coefficient of variation

Estimating Reliability Measure

- Obtain travel time data for a region on selected O-D pairs
- Designed path travel times
- Variation on path travel times
- Develop relationship between path travel times and variation in path travel times

Travel Demand Model

Study Area

- Maryland Statewide Transportation Model Area

ICC and I-270 (Case Study Locations)

Reliability and Mode Choice (1)

- Regional Household Travel Survey
- The survey provides activity scheduling process
- Given a time varying network $\mathrm{G}=(\mathrm{N}, \mathrm{A})$
- N : finite set of nodes
- A: finite set of directed links
- The time dependent zonal demand represents
- number of individual travelers of an O-D pair
- at departure time t
- From available set of modes M

Reliability and Mode Choice (2)

- The choice probability for each mode can be given by

$$
U(m)=\alpha T T_{r}^{q t m}+\beta T C_{r}^{q t m}+\gamma T T R_{r}^{q t m}+\theta_{i} D C_{i}+
$$

Where,
$\mathrm{TT}=$ path travel time
TC = Travel cost
TTR = Travel time reliability (example:
coefficient of variation)
$D C i=$ Decision maker's $\underline{i t h}$ characteristics
$\alpha=$ coefficient of travel time
$\beta=$ coefficient of travel cost
$\gamma=$ coefficient of reliability
$\theta_{i}=$ coefficient of decision maker's i ith
characteristic
$\alpha / \beta=$ value of time
$\gamma / \beta=$ value of travel time reliability
$\gamma / \alpha=$ reliability ratio

Mode Choice Model Results

$R R=\frac{V O R}{V O T}=\frac{\partial U / \partial T T R}{\partial U / \partial T T}=\frac{\beta_{T T R}}{\beta_{T T}}$
$R R=-0.113 /-0.009=13.25$
Assume VoT = $14 \$ / \mathrm{hr}$
VoTR $=13.25^{*} 14=185.5 \$ / \mathrm{hr}$
Quite High

Note: Rail is reference category

Rationale and Reconciliation

- The estimated RR is high. Reported in literature range is $0.1 \sim 2.51$
- The discrepancy is caused by following reasons
- First, RR is estimated based on mode choice problem between auto and rail, while other modes exist in reality (bus, express bus, light rail, and non-motorized transport)
- Second, travel cost and travel time variance of rail is not included in the utility function because of data limitation.
- Third, travel time reliability is calculated by using Maryland specific data (variation may occur using RP or SP data)
- Fourth, since 1 h time interval is used in this study, the travel time reliability measures estimated will be much lower than using smaller time intervals, thus leads to a higher estimation of reliability ratio
- We have used RR as 0.75 considering to improve the model to obtain realistic $R R$ in the future

Application Methodology

Statewide Findings

Year	Total Savings		Travel Time Savings (Minutes)	Travel Time Savings (\$)
Base Year	Travel Time	$1,434,002$	334,552	
Travel Time Reliability	144,255	33,774		
Future	Travel Time	$4,512,147$	$1,052,682$	
Year	Travel Time Reliability	454,639	106,214	

County Level Findings

Zone Level Findings

Corridor Level Savings

Scenario	I-270 Travel Time (Min)		I-270 TT Savings (min/ Traveler)		I-270 TTR Savings (\$ / Traveler)	
	NB	SB	NB	SB	NB	SB
Base-No Build	20.2	23.8				
Base-Build	18.6	21.8	1.6	1.9	0.19	0.21
Future-No Build	21.6	25.7				
Future-Build	19.8	23.7	1.8	2.0	0.22	0.20

Summary and Conclusion

- The paper proposes a unified approach for determining VoTR savings in transportation planning models.
- The approach is designed for estimating the following in a planning model
- reliability ratio,
- VoTR,
- benefits received from new network investments, and
- reliability measures because of newly suggested improvements
- The approach is applied to estimate travel time reliability savings from no-build to build scenarios for both base and future year
- Reliability savings are found to be 10% of the travel time savings

Limitations and Future Explorations

- The mode choice model developed in this research is preliminary and can be improved
- More modes can be integrated in the choice model
- Reliability savings are obtained as a post processor in the planning model
- In the future, reliability can be incorporated in the travel demand mode itself for more realistic behavioral implications

Acknowledgement

- Maryland State Highway Administration

■ University of Maryland National Transportation Center

- University of Memphis

Thank You

Q \& A

