Health Impact Analysis for Integrated Regional Land Use and Transportation Plan

Hsi-Hwa Hu, Guoxiong Huang, Frank Wen, Simon Choi (Southern California Association of Governments)

Margaret Shih

(Los Angeles County Department of Public Health)

May 18, 2015

15th TRB National Transportation Planning Applications Conference

Health and Obesity

Major health concern in the U.S.

- Heart disease, Type 2 diabetes, hypertension, stroke, and certain cancers.
- 36% U.S. adults were obese in 2009-10.
- In LA County, obese adults has increased from 13.6% to 23.6% between 97-11.

Past Research

- Obesity declines with higher income & education.
- In LA, Hispanics and African Americans have higher obesity rates than others.
- Mixed land use, higher transit stop density, population density, longer walking distance are significantly associated with lower obesity level.

Regional Planning & Public Health

Integrated transportation and land use planning policies

- Solve the issue of public health.
- Reduce obesity
- Becoming important for both regional planning and public health agencies.

Transportation Approach

- Two transportation policies on reducing obesity.
 - Promote Active Transportation
 - Expand Public Transportation
- Both acknowledged by U.S. CDC.
- Encourage walk & bike more.

Land Use Approach

- Healthy Community Design (by CDC)
- Residential neighborhoods:
 - Higher densities, mixed land use, better street connectivity, or closeness to transit services
 - Encourage more walking or biking
 - Living in this type of community can reduce weight.

Integrated Regional Land Use / Transportation Plan

- MPOs in California are required to alleviate public health issues in the long-range plan.
- Active transportation and land use planning are two main elements in regional planning to reduce obesity.

Objective of This Research

 Analyze how neighborhood land use and built environment are associated with adults being obese.

Model Formulation

- The model estimates the probability of an individual being obese as a function of four groups of factors:
 - Individual socioeconomic characteristics,
 - Individual health behaviors,
 - Neighborhood quality and safety, and
 - Neighborhood land use and built environment.

Methodology

Model: Binary logit model

- Assumption: land use and built environment characteristics of residential neighborhoods are significantly associated with one's probability of being obese.
- 2007 Los Angeles County Health Survey
- SCAG socio-economic and land use data

Data & Dependent Variables

Los Angeles County Health Survey

- 7,200 adults aged > 18 are sampled
- Residential location by Census tract and zip code

Dependent Variables:

- An adult is obese
- BMI (Body Mass Index > 30)

Explanatory Variables - Individual

- Individual socio-economic characteristics
 - Age
 - Race/Ethnicity
 - Education
- Individual health behaviors
 - Eat fast food at least once per week
 - Engage in vigorous physical activity

Explanatory Variables - Neighborhood

- Neighborhood quality and safety
 - Neighborhood median income
 - Feel neighborhood is safe from crime
- Land Use & Built Environment
 - Household density
 - Bus stop density
 - Local bus accessibility
 - Neighborhood has a rail station

Model Result

Variable	Description	Estimate	Wald Chi-Sq.	Pr > ChiSq	Standardized Estimate
Intercept		-1.215	8.24	0.004	
AGE3049	Age 30-49	0.482	16.86	<.0001	0.13
AGE5064	Age 50-64	0.768	37.82	<.0001	0.19
AGE6599	Age 65 or older	0.152	1.17	0.279	0.04
Hispanic	Hispanic	0.192	4.52	0.034	0.05
AfrAm	Non-Hispanic African American	0.453	13.95	0.000	0.07
Asian	Non-Hispanic Asian	-1.052	36.51	<.0001	-0.17
HighEdu	4-yr college graduate or higher degree	-0.408	23.77	<.0001	-0.11
INC10K	Neighborhood average household income	-0.135	28.77	<.0001	-0.16
Safety	Feel neighborhood is safe from crime	-0.315	12.76	0.000	-0.06
Fastfood	Eat fast food at least once per week	0.368	26.73	<.0001	0.10
VigPA	Engage vigorous physical activity	-0.391	25.61	<.0001	-0.10
HHden	Neighborhood household density	-0.020	13.24	0.000	-0.19
LogFbusD	Log of stop density for frequent bus services	-0.068	5.24	0.022	-0.06
LbusAcc	Local bus accessibility	5.685	2.84	0.092	0.05
Rail	Neighborhood has at least one rail station	-0.453	14.09	0.000	-0.10
RailxDen	Interaction term = Rail x HHden	0.019	12.01	0.001	0.17
Likelihood Ra Estimation bas	tio: Chi-Sq.=407.68; Pr > ChiSq <.0001 sed on N = 5245 686				

An individual is less likely to be obese if he/she is...

- Younger, elderly, NH White, high education,
- living in a wealthier/safer neighborhood, eating less fast food, engaging in vigorous physical activity,
- living in higher density, with frequent bus services, near a rail station.

Model Result – Residential Density

Residents are less likely to be obese:

- Lower-density residents: if rail stations near neighborhoods.
- Higher-density neighborhoods: if better access to both rail and bus

Analysis & Discussion

- Significant association between neighborhood land use and obesity.
- Higher residential density, job density, near rail and good bus services are less likely to be obese.

Analysis & Discussion (2)

- TOD type of neighborhoods encourage more use of active transportation modes.
- Active transportation gives people an opportunity to engage in a moderate-level of exercise, thus reduce their weight.

Conclusion

- Contributes an approach to analyze health impact of an land use-transportation plan.
- Future analysis
 - Children obesity
 - Change in demographic pattern:
 - Aging, Millennium, Assimilation

Thank you Question?

Hsi-Hwa Hu hu@scag.ca.gov

