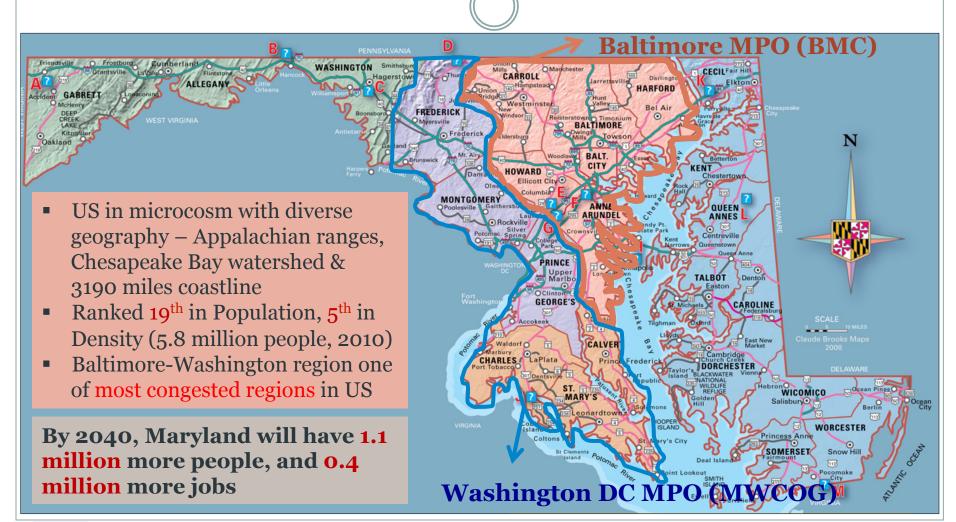
Integration with Urban Models Are Dueling Models Good or Bad and What Can They Learn from Each Other?

THE MARYLAND EXPERIENCE

14TH TRB PLANNING APPLICATIONS CONFERENCE


> MAY 5-9, 2013 COLUMBUS, OHIO

About Maryland and the MPO regions

About Maryland DOT and SHA

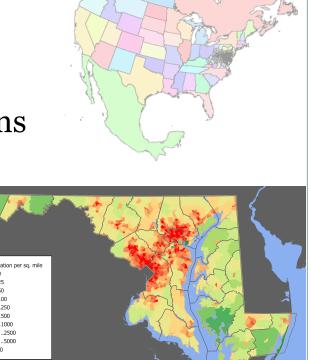
MDOT and its modals oversee all aspects of transportation in MD

SHA operates, maintains and rebuilds the numbered, non-toll routes - 17,000 lane-miles and 2,576 bridges.

SHA roads carry 65 percent of the state's traffic and 85 percent of its truck freight.

Two major transit systems: MTA in Baltimore and WMATA in the DC region.

Port of Baltimore is the fastest growing port in US. BWI Airport served 22.4 million passengers in 2011.



Key Drivers for MD Statewide Transportation Model

GOAL: To support multimodal transportation planning decisions in Maryland by providing reliable and consistent travel forecasts and analysis capabilities

- Travel demand on corridors, rural regions
- Freight Planning
- Transportation System Performance
- Long range and Scenario Planning
- Common cross agency platform
- **❖**Inform MPO models for externals

Key Drivers (continued)

Land Use Policy

Land Use & Transportation Connections

Smart Growth Policies/ Local Zoning

Job/Housing balance

Long Distance Travel

- East Coast through trips
- Impact from projects in other states
- Multi-state Corridor projects

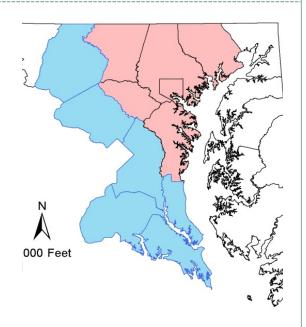
Regionally Significant Land Use and Network Changes

(BRAC, ICC, TODs, Port Expansion, VA HOT Lanes)

❖Impacts of Investment Levels

*Normalization of Outcomes (regions/ corridors)

PlanMaryland



MWCOG and BMC MPO Model Features and Capabilities

- Well established trip based 4 step models with gravity formulation, nested logit structure and TOD assignments with feedback loops
- Similar travel regions, transportation systems, supply and demand challenges
- Overlapping modeled region, travel markets, share joint household surveys and cooperative land use forecasts based on local inputs
- Same software platform
- Used for NEPA and transit studies within MPO

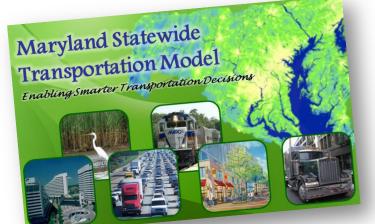
SHARES COMMON GOAL FOR PROVIDING AIR QUALITY CONFORMITY AND ATTAINMENT FOR THE REGIONS

Limitations of the MPO Models in terms of Statewide Priorities

- Geographic coverage and resolution around model boundaries
- Limited emphasis on long distance and visitor travel, intercity travel
- Less detail on freight demand
- Limited information on through travel (person and freight)
- Differences in socioeconomic and network assumptions outside MPO boundaries, external station assumptions etc.

The Statewide Model

COMPLIMENTS MPO MODELING EFFORTS IN A COLLABORATIVE FRAMEWORK BOTH FROM INSTITUTIONAL AND TECHNICAL STANDPOINT



Maryland Statewide Transportation Model (MSTM)

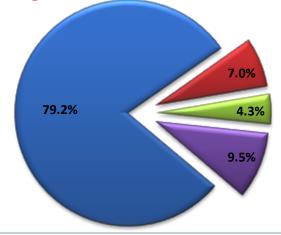
Local Level Traffic analysis zones, Urban model (MPO) data

Statewide Level

Aggregated MPO zones, Land use, Short distance flows, Residents travel

National Level

Counties and States, Economic forecasts, Long distance flows,
Visitor travel

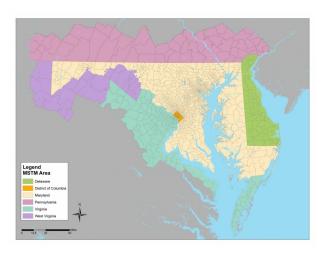


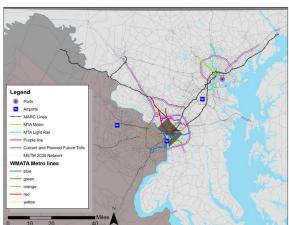
Maryland Baseline Travel Demand Projections

Performance Measure	% Increase (2007-2030)
Auto Trips	12%
Truck Trips	61%
Vehicle Miles of Travel	34%
Vehicle Hours of Delay	67%
Congested Lane Miles	64%
Through Travel (E-E)	52 %

Summary of Daily Person Trips (2030)

Within Maryland

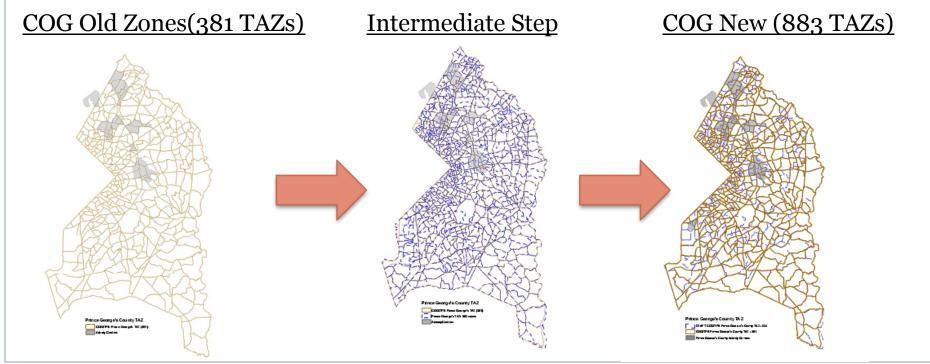

Maryland DeparturesMaryland ArrivalsThrough Trips



Key Challenges-Data Fusion

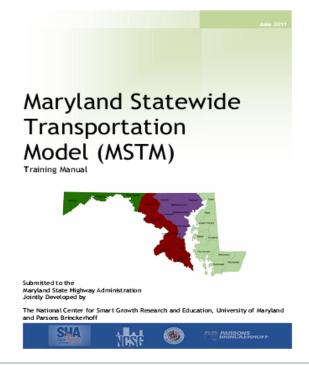
- Land use definitions (e.g. employment: BEA/BLS)
- Network attributes were different
- Coding transit network (different naming conventions)
- Zoning considerations on overlapping areas
- Outside MPO boundaries: depend on Census data
- Outside state to work with other DOTs
- MD Developed a "Reconciliation procedure: A step by step guide"

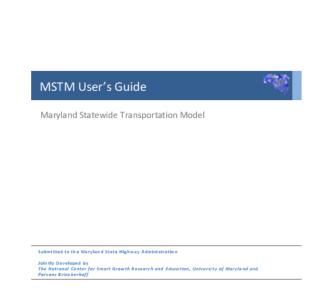
State	SMZ
MD	1151
VA	171
PA	55
NV	30
)E	97
OC	84
Γotal	1588



Key Challenges-Model Integration

- When MPOs change the zone structure, reconciliation to be reviewed
- With CLRP updates network needs to be reviewed
- Creating a master network synchronous with MPOs
- When MPOs change modeling approach
- Difficult to compare results

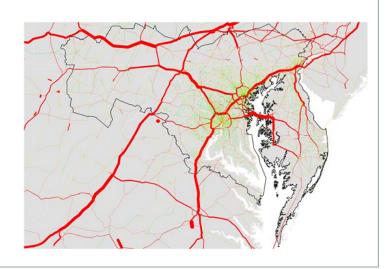




Key Challenges-Coordination

- Keeping up with MPOs and neighboring State DOT models
- Involving smaller MPOs and rural counties for better data
- Constantly hosting meetings to learn from each other
- Workshops/ presentations/ Unified Plan Work Program activities

COMMUNICATION
IS KEY
TO THE SUCCESS OF
THIS
COLLABORATIVE
EFFORT


Learning Through Regional Coordination (1)

A Win-Win Strategy

For MPOs

- MPOs gain additional information from the statewide model on
 - Long distance travel
 - Non-MPO areas
 - External station forecasts
- Better decision making on freight travel
 - External trips
 - Detailed freight movement
- Take advantage of new modeling approaches/ state resources (e.g. destination choice, mode choice, centerline data)

Learning Through Regional Coordination (2)

A Win-Win Strategy

For state agencies

- MPOs control totals as guideline for validation
- Advantage of using MPO Household Travel Survey data
- Obtaining zone and network data as they are available
- Avoid redundant coordination/ processes
- A synergy working hand-in-hand for transportation planning related activities

DRAFT 8-27-2010

2007/2008 TPB Household Travel Survey

Technical Documentation

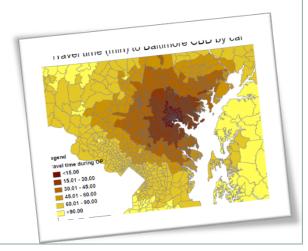
National Capital Region Transportation Planning Board Metropolitan Washington Council of Governments

August 27, 2010

Common Elements

Both statewide models and MPO models driven by

- Vision and goals at a state/ regional/ local level
- Local and state transportation needs and priorities
- Data and Performance Measure driven decisionmaking


Data Needs for Model Development

- Behavioral data (household travel surveys, stated/ revealed surveys etc.)
- Network data, land use data, economic data
- External data (freight, other indicators etc.)

Data Needs for Model Calibration/ Validation

- Traffic and Transit demand for base year
- Trip generation comparisons, trip length frequency distributions etc.

Common Features and Use

Calibration

- For calibration purposes a number of MPO data sources are used in the SW model
- For long distance and truck trips MPO models use SW model results

Validation

- For validation purposes the SW model is compared to urban area MPO models
- In cases of different results, reconciliation approach is used

Application

- ▼ For project planning studies requiring NEPA, MPO models are used
- ➤ For corridor studies, rural area modeling, long range planning and scenario planning purposes, statewide model is used

Cross Walk Between Models

Networks and zones

 One to one relationship of networks and zones between MPO and SW models

Socio-Economic (SE) data

 For consistency purposes SE data from MPO models are brought to same units (ex. BEA versus BLS; and HH by workers)

Screenlines

 Screenline traffic volumes from MPO models are captured in SW models for validation

Model Outputs

 Other model outputs such as control totals for trip production, distribution, and mode choice is used for reconciliation

Next Steps

- Synergistic approach to make sure data and modeling needs are met from both model platforms
- Develop formal guidelines for closer tie-ins
- Continued collaboration for MAP-21 requirements, state, regional and local goals
- Opportunities for broader integration with mega-region models, enhancements for sub-area travel demand
- Continued automation of processes

GOAL IS TO DEVELOP PROCESSES AND PRODUCTS THAT COMPLIMENT RATHER THAN DUPLICATE EFFORTS

Thank You!

Contact Information

Subrat Mahapatra
Office of Planning and Preliminary Engineering
MD State Highway Administration
707 N. Calvert Street
Baltimore, Maryland

Phone: 410-545-5649

E-mail: smahapatra@sha.state.md.us

