

Application of User Interface Tool for Air Quality Post Process (AQPP)

14th TRB National Transportation Planning Applications Conference

May 6, 2013

Heejoo Ham, Citilabs

Introduction

 AQPP (Air Quality Post Processor) has been developed to estimate the emissions in transportation planning model by utilizing the emission rates from MOVES.

- The original process developed by Florida DOT was implemented by the Cube application manager, and has been improved recently along with the user interface tool. The AQPP tool has also been enhanced as follows:
 - Addition of alternative process for VMT computation
 - Addition of flexible application to any counties in US
 - Addition of flexible analysis to any types of pollutants
 - Conversion process of input file formats

Transportation Conformity

- Transportation conformity establishes the framework for improving air quality to protect public health and the environment.
- A provision to ensure that transportation investments conform to a State's air quality implementation plan (SIP) for meeting the Federal air quality standards.
- Primarily concerned air pollutants:
 - OZONE (O_3)
 - Carbone Monoxide (CO)
 - Particulate Matter (PM₁₀ and PM_{2.5})
 - Nitrogen Dioxide (NO₂)

MOVES (Motor Vehicle Emission Simulator)

- EPA (US Environmental Protection Agency) has developed the MOVES that is a new emission modeling system to estimate emissions for highway vehicles.
- The latest version of MOVES: 'MOVES2010b' (June 2012)
- Input specifications :
 - Vehicle types
 - Time periods

- Output estimates :
 - Bulk emissions
 - Emission rates

- Geographical area
- Vehicle operating characteristics
- Road types

Running vs. Non-Running Emissions

Running – produced while vehicle in motion

- Tailpipe exhaust
- Crankcase (engine)
- Evaporative

- Non-running produced while vehicle is stationary
 - Start exhaust
 - Refueling
 - Evaporative

Overview of FSUTMS AQPP

Overview of FSUTMS AQPP (cont'd)

Step 1: Develop Emissions Factors in MOVES

- By speed bin, pollutant, model year, and County
- Grams/mile (running emissions)
- Grams/vehicle (nonrunning emissions)
- AQPP reformats MOVES output emissions factors for input into FSUTMS

Step 2: Prepare FSUTMS network within FSUTMS AQPP

- Congested speeds
 (already included)
- VMT
 - Calculate intrazonal VMT and append to centroid connectors
 Calculate link-level VMT (AADT * link distance)
- Append MOVES road types
- Append HPMS functional classification codes (outside AQPP within GIS)

Step 3: Reconcile with Count Data within FSUTMS AQPP

- Aggregate link-level model VMT by HPMS functional class by County
- Calculate HPMS adjustment factor using ratio of HPMS VMT to model VMT
- Apply HPMS adjustment factor to VMT estimates at linklevel by HPMS functional class

Step 4: Estimate Emissions within FSUTMS AQPP

- Running emissions
- Apply emissions factors/mile to model VMT for each link
- Aggregate link-level emissions by HPMS functional class by county and pollutant
- Non-running emissions
- Apply emissions factors/vehicle to vehicle population
- Sum running and nonrunning emissions by HPMS functional class by county and pollutant

Cube-based AQPP

Calculation of Intrazonal VMT per TAZ

Calculate intrazonal VMT by multiplying intrazonal time matrix by vehicle trip matrix

• Take the result on the diagonal (zone 3 to 3 which represents the intrazonal value for example)

ł	$\land \land \land \land \land$											
	1 HE	3W 2	2 HB	ѕн∣	3 HBS	R	4 НВО	5 N	нв	✓	*6 TT	7
			Sum		1		2	3			4	
		3694	7.42		152.64		211.40	2	252.7	8	836.	49
	1	1	32.64		0.77		0.93		1.2	8	З.	98
	2	2	11.40		0.96		1.69		1.9		6.	04
	3	2	52.78		1.28		1.97		2.4	1	0	90
	4	8	36.49		3.98		6.04		8.0		27.	73
	5	11	87.45		0.97		1.32		1.7	9	6.	50
	6	11	05.81		0.57		0.72		0.9	9	З.	47

1 HE	SW 2 HBS	SH 3 HBSR	4 HBO	🖌 *5 NH	в
	Sum	1	2	3	
	725874.38	278.32	546.58	608.67	
1	278.32	1.76	2.76	3.33	
2	546.58	2.70	5.85	C 33	
З	608.67	3.33	6.55	7.21	2
4	1473.24	7.59	14.14	17.41	
5	678.39	3.81	6.36	8.03	
6	274.85	1.60	2.49	3.20	
7	1103.32	6.69	10.04	12.76	

ORTESTTIM	IE 🗹 *2 DI	ISTANCE	
Sum	1	2	3
363604954.97	174793.83	174629.27	174532.06
176473.70	0.12	9.56	0.31
176120.49	0.56	0.18	0.33
176069.72	0.32	0.31	0.10
175902.77	0.47	0.51	0.17
176026.45	0.31	0.58	0.35
176183.47	0.29	0.62	0.36
176531.02	0.33	0.77	0.63

X	/ /		_
TAZ		IVMT	Γ
	1	0.3	
~	2	1.36	
	3	0.96	
	4	6.47	
	5	0.89	
	6	0.15	
	. 7	6.56	

Adding Intrazonal VMT to Network

Once the intrazonal VMT per zone is calculated, the VMT must be appended to the network

 Pro-rate the intrazonal VMT by the total VMT distribution between centroid connectors within the zone

 Add pro-rated intrazonal VMT to each centroid connector link

AQPP Input Data

- Emission rates per distance (for running)
- Emission rates per vehicle profile (for non-running)
- Emission rates per vehicle (for non-running)
- VMT hourly fractions
- Vehicle populations
- VMT (Vehicle Miles Travelled)
- Skimming data (e.g. distance)
- O-D trips

AQPP Outputs

Highway network including emission estimations (NOx, VOC and CO₂EQ)

	· John	1720	V a t T	
	Highway Links			×
	√ Ø			
	AX/BX	104047	104041	
	AY/BY	728950	728687	
	A	2551	6010	
1	В	6010	2551	
	HPMS	16	16	
	COUNTY_ID	12113	12113	
	SPDBIN	8	3	
	RAW_VMT	445.3688	1966.7185	
	NOXPERMILE	3751.1399	36210.375	
	VOCPERMILE	1045.9126	12684.298	
	CO2EQPERMILE	4.3659033E0008	3.718662E0009	Ŧ

REAL OF FLORIDA

AQPP Outputs (cont'd)

Emission summary by county and region

SUMM	ARY OF AIR QUALITY	FOR BAY COUN	ГҮ						
1	DESCRIPTION, HPMS	FUNCTIONAL	Daily	Model,	Daily HPMS,	Daily Model,	Daily Model,	Daily Model,	Daily Model
/	NAME,	CLASSES,	UNADJ	. VMT,	ADJ. FACTOR,	ADJUSTED VMT,	NOX (grams),	VOC (grams),	CO2EQ (grams)
Rural	Interstate,	1,	Λ	Ο,	Ο,	Ο,	Ο,	Ο,	0
Rural	Principal Arterial	, 2,	676	105.3,	0.6097,	412221.4,	571099.1,	132218.1,	183634957.7
Rural	Minor Arterial,	6,	249	549.7,	0.6829,	170417.5,	436891.2,	79290.4,	107903303.7
Rural	Major Collector,	7,	9	935.9,	0.5146,	5113.0,	7249.3,	1953.3,	2434412.0
Rural	Minor Collector,	8,		Ο,	Ο,	0,	Ο,	Ο,	0
Rural	Local,	9,	99	594.6,	0.8202,	81687.5,	158725.5,	48511.0,	51382473.4
Urban	Interstate,	11,		Ο,	Ο,	Ο,	Ο,	Ο,	0
Urban	Freeway,	12,		Ο,	Ο,	Ο,	Ο,	Ο,	0
Urban	Other Arterial,	14,	2007	755.9,	0.8663,	1739318.9,	2843414.8,	859074.0,	957936776.1
Urban	Minor Arterial,	16,	779	261.0,	1.0434,	813080.9,	1343099.0,	385094.0,	439156642.9
Urban	Collector,	17,	727	947.2,	0.9584,	697664.6,	1206791.5,	340499.8,	382465234.0
Nrban	Local,	19, /	✓ 590	519.5,	1.7744,	1047817.7	1949312.4,	683945.6,	677066293.6
Total	Running Emissions					,	8516582.8,	2530586.1,	2801980093.3
Total	Non-Running Emissi	ons				,	12332233.3,	20869887.0,	753781857.2

20848816.1,

23400473.1,

3555761950

Total Emissions including Non-Running

Total NOx Emissions = 20,848,816 grams/day Total VOC Emissions = 23,400,473 grams/day Total CO2eq (GHG) Emissions = 3,555,761,950 grams/day

Enhanced AQPP Tool

- Addition of alternative VMT computation process
 - Applicable to any counties in US
- Applicable to any types of pollutants
- Conversion of input file formats
 - Development of AQPP user interface tool

Additional Option of VMT Computation

 In the Cube-based AQPP, the user can directly input the VMT data by HPMS functional class and vehicle type.

- In the AQPP user interface tool, the user can alternatively input the VMT data by HPMS functional class and the VMT proportions.
 - The VMT proportions by HPMS functional class and vehicle type are obtained from any valid source.
 - The observed VMT data by HPMS functional class are classified into the HPMS vehicle type using the VMT proportions.

Additional Option of VMT Computation (cont'd)

			CO_NO	CO_NAME	COUNTY_ID	YEAR	HPMS_FC	HPMS_VT10	HPMS_VT20	HPMS_VT30	HPMS_VT40	HPMS_VT50	HPMS_VT60	HPMS_VT_T
			48	ESCAMBIA	12033	2009	1	0	0	0	0	0	0	0
			48	ESCAMBIA	12033	2009	2	8253	1292374	748573	6149	106156	236096	2397601
			48	ESCAMBIA	12033	2009	6	7664	847746	617634	2903	95106	56616	1627669
· _			48	ESCAMBIA	12033	2009	7	16	1762	1106	3	195	166	3248
/			48	ESCAMBIA	12033	2009	8	17	1869	956	54	174	29	3099
/	<i>(</i>		48	ESCAMBIA	12033	2009	9	0	0	0	0	0	0	0
1	/		48	ESCAMBIA	12033	2009	11	18950	4124502	1745670	29820	273966	822062	7014970
	/		48	ESCAMBIA	12033	2009	12	0	0	0	0	0	0	0
/	/		48	ESCAMBIA	12033	2009	14	58579	8210351	3125631	7107	356972	293589	12052229
1	/		48	ESCAMBIA	12033	2009	16	17283	5039219	1350269	3866	92162	34036	6536835
-/-			48	ESCAMBIA	12033	2009	17	509	96532	32672	652	4805	1440	136610
/	/		48	ESCAMBIA	12033	2009	19	0	0	0	0	0	0	0
	1	6			1 1/1							388889 I	THI	THI

1 1 1	1	1 1/1 1/1						2 AIN				1 1 1			
CO_NAME	CO_NO	CO_FIPS	YEAR	R_INT	R_PRI_ART	R_MIN_ART	R_MAJ_COL	R_MIN_COL	R_LOCAL	U_INT	U_PRI_ART	U_ART_OTH	U_MIN_ART	U_COL	U_LOCAL
 ESCAMBIA	48	12033	2008	68533	261542	168862	21261	131279	149920	958646	0	2073672	1956770	1162102	2695248
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															

èп.	<u> </u>	· · · · · · · · · · · · · · · · · · ·			<u> </u>									1 1 1 1
		ντ	FC1	FC2	FC6	FC7	FC8	FC9	FC11	FC12	FC14	FC16	FC17	FC19
	▶	1	235.9	900.28	795.1	104.73	720.15	822.41	2589.65	0	10078.93	5173.58	4329.92	10042.32
		2	36941.2	140978.45	87949.14	11533.83	79174.07	90416.42	563642.8	0	1412649.48	1508465.88	821169.97	1904528.8
		3	21397.2	81657.99	64076.24	7239.74	40497.81	46248.31	238558.33	0	537787.12	404196.51	277931.31	644602.46
▶∥		4	175.76	670.76	301.17	19.64	2287.53	2612.35	4075.12	0	1222.81	1157.27	5546.38	12863.64
		5	3034.36	11580.01	9866.74	1276.45	7370.94	8417.58	37439.42	0	61419.58	27588.25	40874.75	94800.28
		6	6748.57	25754.5	5873.61	1086.62	1228.49	1402.93	112340.67	0	50514.08	10188.51	12249.67	28410.49

Applicable to any Counties in US

 The Cube-based AQPP is originally processed for only 3 counties such as Bay, Escambia, and Santa Rosa.

- The AQPP tool is applicable to select any counties in US.
- The county FIPS codes with the state code are used to indicate the designated county. For examples,
 - Bay County = 12005
 - Escambia County = 12033
 - Santa Rosa County = 12113

Applicable to any Counties in US (cont'd)

The user can select any designated counties from the list.

Applicable to Any Pollutant Types

- The Cube-based AQPP was originally processed for only 3 pollutants such as Oxides of Nitrogen (NOx), Volatile Organic Compounds (VOC) and CO₂ Equivalent (CO₂EQ) to estimate the emissions.
- The AQPP user interface tool can estimate any types of pollutants by the user's selection.

ollutar	nts (Available /	(Selected)		1			
	Code	Name	-			Code	Name
•	001	Total Gaseous Hydrocarbons	E		۱.	003	Oxides of Nitrogen (NOx)
	002	Carbon Monoxide (CO)		▶ ▼		087	Volatile Organic Compounds
	005	Methane (CH ₄)				098	CO ₂ Equivalent
	006	Nitrous Oxide (N2O)					
	020	Benzene (C ₆ H ₆)					
	021	Ethanol (C ₂ H ₆ O)		00			
	022	Methyl Tert-Butyl Ether (C5H12O)	-				

Applicable to Any Pollutant Types (cont'd)

As an additional option, the user can also select the type of pollutant group (e.g. GHG - Greenhouse Gasses).

Pollutants (Available / Selected)

	Code	Name					Code	Nam	e	*
Þ	001	Total Gaseous Hydrocarbons	Ξ		┓┣		003	Oxid	es of Nitrogen (NOx)	
	002	Carbon Monoxide (CO)	۳			_	005		ane (CH ₄)	
	020	Benzene (C ₆ H ₆)		4	Gree	nhou	use Gasses		ıs Oxide (N ₂ O)	Ξ
	021	Ethanol (C ₂ H ₆ O)		40	Ozor	ie			e Organic Compounds	
	022	Methyl Tert-Butyl Ether (C5H12O)		25	Parti	culat	e Matter		spheric CO ₂ (CO ₂)	
	023	Naphthalene (C ₁₀ H ₈)		418	Toxi	c Che	emicals		Energy Consumption	
	024	1,3-Butadiene (C ₄ H ₆)	-				092	Petro	leum Energy Consumption	-

Pollutant	Bollutant Namo		Pollutant Group							
ID	Poliutant Name	Ozone	Toxics	PM	GHG					
1	Total Gaseous Hydrocarbons	d	d	d						
2	Carbon Monoxide (CO)	X			X					
3	Oxides of Nitrogen	Х		Х						
5	Methane (CH4)	d	d	d	X					
6	Nitrous Oxide (N2O)		ATT		X					
20	Benzene		X	X						
21	Ethanol		TTT+							
22	MTBE		X							
23	Naphthalene		X		ZIHUKUY					
24	1,3-Butadiene		X							
25	Formaldehyde	XIIIII	X							
26	Acetaldehyde		X		ZAKAR					
27	Acrolein		X							
30	Ammonia (NH3)	11/1/1/		X						
31	Sulfur Dioxide (SO2)	111111		X //	///					
32	Nitrogen Oxide	X		X//	////					
33	Nitrogen Dioxide	X		X//	$//\Lambda$					
79	Non-Methane Hydrocarbons	d	d	d	111					
) 80	Non-Methane Organic Gases	d	d	_ d//	////					

Pollutant	Dellutert Nome		Pollutan	t Group	
ID	Pollutant Name	Ozone	Toxics	PM	GHG
86	Total Organic Gases	X	Х	Х	
87	Volatile Organic Compounds	Х	Х	Х	
90	Atmospheric CO2	1111			Х
91	Total Energy Consumption	1111	d	d	Х
92	Petroleum Energy Consumption	175	1		Х
93	Fossil Fuel Energy Consumption		1		Х
98	CO2 Equivalent				Х
100	Primary Exhaust PM10 - Total		d	Х	
101	Primary PM10 - Organic Carbon		d	Х	
102	Primary PM10 - Elemental Carbon		d	Х	
105	Primary PM10 - Sulfate Particulate		d	Х	
106	Primary PM10 - Brakewear Particulate	////		Х	
107	Primary PM10 - Tirewear Particulate			Х	
110	Primary Exhaust PM2.5 - Total			Х	
111	Primary Exhaust PM2.5 - Organic Carbon			Х	
112	Primary Exhaust PM2.5 - Elemental Carbon			Х	
115	Primary Exhaust PM2.5 - Sulfate Particulate			Х	
116	Primary Exhaust PM2.5 - Brakewear Particulate			Х	
117	Primary Exhaust PM2.5 - Tirewear Particulate			Х	

Conversion of Input File Formats

- The AQPP user interface tool changes all the original input files into the dBase format from CSV format because the dBase files are more compatible with Cube Voyager program.
- The AQPP user interface tool includes a tool to convert the CSV format to the dBase format.

VES CSV to DBF Data Con	verter					}}////
Input MOVES format: *	Rate per distance				3	
CSV file: *	C:\FDOT_AQPP\Inp	out_Data\rate	perdistance-MOVES20	10a-GHG-bay.		
Data view:	testMOVES2010a	2	2006	0		
	testMOVES2010a	2	2006	0		
	testMOVES2010a	2	2006	0	Functional class by area type	1
	testMOVES2010a	2	2006	0	Rate per distance	
	testMOVES2010a	2	2006	0	Rate per vehicle type	
	testMOVES2010a	2	2006	0	Vehicle populations	
	testMOVES2010a	2	2006	0	Vehicle miles travelled VMT bourdy fractions	
	testMOVES2010a	2	2006	0		/////
	testMOVES2010a	2	2006	0		
	testMOVES2010a	2	2006	0		
	testMOVES2010a	2	2006	0	•	
	<			+		
Dutput DBF file: *	C:\AQPP\Sample\M	OVES_RATE_F	PER_DISTANCE_BAY_	2010.DBF		
				Convert	Close	

Development of AQPP User Interface Tool

- The AQPP user interface tool has been developed to implement the process with setting the input/output data interactively.
 - Scenario management settings
 - General input data settings
 - County input data settings

Scenario Management Settings

The user can create/update any scenarios through the scenario management interface.

AQPP - Air Quality Post	Processor					x
File Edit View T	ools Window Help					
Run Status	,				4	Þ
Title	Counties	Pollutants	Status	Progress	Started	
Bay County - GHG	2010 1	37	New	0%		
)[=					
History	4 b x [log			4	Þ
					4	\triangleright
Bay County - GHG 20 5/3/2013 12:00:0	010 00 AM					
0 ,,,						
Ox 1						

General Input Data Settings

Setting general input data and output folder

24

AQPP - Air Quality Post Processor		
File Edit View Tools Window Help		
	4	
Run Settings	Martha * 1	
State: FL - Florida	Monut: Uune	Run settings
Run title: * Bay County - GHG 2010	· · · · · · · · · · · · · · · · · · ·	
Output directory: * C:\Users\Heejoo\AppData\Roaming\Citilabs\	AQPP\Sample\Output	
Counties (Available / Selected)		
Code Name 4	Code Name	
12001 Alachua	12005 Bay	
12003 Baker		County settings
12007 Bradford		
12009 Brevard		
L 12011 Broward		
Pollutants (Available / Selected)		
Code Name 4		
	OU2 Carbon Monovide (CO)	
041 Ethyl Benzene	Db 003 Oxides of Nitrogen (NOx)	Pollutant settings
042 Hexane	005 Methane (CH ₄)	
043 Propionaldehyde	006 Nitrous Oxide (NaO)	
Model Data		
Loaded network: * C:\Users\Heejoo\AppData\Roaming\Citilabs\	AQPP\Sample\LOADED_NETWORK.NET	
Skimming matrix: * C:\Users\Heejoo\AppData\Roaming\Citilabs\	AQPP\Sample\SKIMMING.MAT	Model dete pottinge
Trip matrix: * C:\Users\Heejoo\AppData\Roaming\Citilabs\	AQPP\Sample\TRIPS.MAT	woder data settings
Internal zones: * 1850 👘 Total zones: 1,891		

Run Settings

County Settings

- The state selection filters which counties are available for selection.
 - Counties can be added/removed/edited from the model by dragging the selected county, using the arrow buttons, or by options.
- All counties are preloaded (without input data).

Code 12001	Name	*				
12001					Code	Name
	Alachua	_		Þ	12005	Bay
12003	Baker				12033	Escambia
12007	Bradford		DD		12113	Santa Rosa
12009	Brevard	K			7	
12011	Broward	\ -				
		•	Add			
			Edit			
		×	Delete			

Pollutant Settings

- Pollutants can be added or removed from the model by dragging the selected pollutants or using the arrow buttons
 - The user has the flexibility to select a group of predefined pollutants:
 - Greenhouse gasses
 Ozone
 Particulate Matter
 Toxic Chemicals

Pollutan	ts (Available / Selec	ted)		K			
	Code	Name	*			Code	Name
Þ	001	Total Gaseous Hydrocarbons			۱.	003	Oxides of Nitrogen (NOx)
	002	Carbon Monoxide (CO)				087	Volatile Organic Compounds
	005	Methane (CH ₄)				098	CO ₂ Equivalent
	006	Nitrous Oxide (N ₂ O)		44			
	020	Benzene (CeHe)	Ŧ				

Loaded Highway Network Settings

- The loaded network (.net) is a required input file for AQPP. The additional options should be set along with setting the highway network.
 - Browse for a "loaded" highway network file
 - Create a new highway network (based on a template with the required fields)
 - Edit the currently specified network (in Cube)
 - Setting applicable link attributes using 'Field Lookup' option

		Network Field Lookup (LOAD	ED_NETWORK.NET)	1111	
Model Data		Field Lookup			
Loaded network: *	C:\AQPP\Sample\LOADED_NETWORK.NET	AREA_TYPE: *	AREA_TYPE		-
Skimming matrix: *	C:\AOPP\Sample\SKIMMING MAT	FACILITY_TYPE: *	FACILITY_TYPE		- 6
Skinning maarx.	er weit i panpie pranimitation nu	CGSPEED: *	CGSPEED		•
Trip matrix: *	C:\AQPP\Sample\TRIPS.MAT	VMT: *	▼ WMT ▼		-
Internal zones: *	1850 Total zones: 1,891	MOVES Types			
111011012011031		Network field:		(
		October Lookup file:	Ig/Citilabs/AQPP/Data/MOVES_FC_AT_DATA.DBF	////	Browse
			Default lookup file		D New
		HPMS Types Network field:		211	le New
		O Lookup file:	ing\Citilabs\AQPP\Data\HPMS_FC_AT_DATA.DBF		🖉 Edit
			Default lookup file		Field Lookup
			Ok Cancel		

Skimming Matrix Setting

 The skim impedance (e.g. distance) is used to compute the intrazonal VMT value. The additional options should be set.

- Browse for a trip matrix file
- Open the currently specified file (in Cube)
- Setting applicable skimming tables using 'Skimming Tables' option

$\langle \rangle$	Model Data		
	Loaded network: *	C:\AQPP\Sample\LOADED_NETWORK.NET	•
	Skimming matrix: *	C:\AQPP\Sample\SKIMMING.MAT	•
	Trip matrix: *	C:\AQPP\Sample\TRIPS.MAT	•
	Internal zones: *	1850 Total zones: 1,891	
~~~~		Skimming Matrix Table Lookup (SKIMMING.MAT)   Matrix Table Lookup   Distance: * 001: DISTANCE   Ok   Cancel	
29			

#### County Input Data Settings

#### Setting county-related input data

County Settings				
Code: *	12005	-	<b>←</b>	County setting
Name: *	Bay	-		
MOVES				
Emission Rates			ALL	
Per distance: *	C:\AQPP\Sample\MOVES_RATE_PER_DISTANCE_BAY_2010.DBF	-	1441	Setting emission rates from
Per vehicle type: *	C:\AQPP\Sample\MOVES_RATE_PER_VEHICLE_TYPE_BAY_2010.DBF	-		Moves
Per profile: *	C:\AQPP\Sample\MOVES_RATE_PER_VEHICLE_TYPE_BAY_2010.DBF		AM	
Vehide Miles Travelled				
VMT by VT and RT: *	C:\AQPP\Sample\MOVES_VMT_BY_VT_AND_RT.DBF	-		Setting VMT data from Moves
Hourly VMT fractions: *	C:\AQPP\Sample\MOVES_HOURLY_FRACTIONS.DBF	• •	PULL	
Other Data				
Vehicle populations: *	C:\AQPP\Sample\MOVES_VEHICLE_POPULATIONS.DBF	•		Setting vehicle population
HPMS				
Vehicle Miles Travelled				
Observed VMT				
VMT by FC and VT: *				
<ul> <li>Estimated VMT</li> </ul>				Setting VMT input data
Daily VMT by FC: *	C: \AQPP \Sample \HPMS_DAILY_VMT_FL.DBF	• <u> </u>	H	
Prior VMT by FC and VT: *	C: \AQPP\Sample\HPMS_PRIOR_VMT_BY_FC_FL.DBF	• •	H	
Adjustments				
Seasonal VMT factors:	C: \AQPP\Sample\HPMS_SEASONAL_FACTORS.DBF	• 🗆 •		Setting VMT seasonal factor
Apply HPMS factors:	V		F	
		Canad	×	

**Output Summary of Emission Estimations** 

#### Database format (*.DBF)

DESC	CLASS	UNADJVMT	ADJFAC	ADJVMT	NOX	N2O	ACO2	TECP	CO2E
Rural Interstate	1	0	0	0	0	0	0	0	0
Rural Principal Arterial	2	801737.5	0.6097	488819.4	1030420	1731252.2	156839750301.5	2.1679697E15	157481643425.9
Rural Minor Arterial	6	249549.7	0.6829	170417.5	430147.9	938633.7	57784464022.7	798333120000000	58070037042.7
Rural Major Collector	7	11782.2	0.5146	6063.1	14631.8	43512	2616089425.5	36141584644972	2628509524
Rural Minor Collector	8	0	0	0	0	0	0	0	0
Rural Local	9	117995	0.8202	96779.5	285421.6	585975.3	32189932358.6	444978370000000	32390241136.8
Urban Interstate	11	0	0	0	0	0	0	0	0
Urban Freeway	12	0	0	0	0	0	0	0	0
Urban Other Arterial	14	2007735.8	0.8663	1739301.5	2548315.8	9145200.8	381496616692.9	5.2964184E15	384264236541.1
Urban Minor Arterial	16	779261	1.0434	813080.9	1053982.2	3167271.4	137584111184.9	1.9112021E15	138554795779.9
Urban Collector	17	727940	0.9584	697657.7	995234.4	2903121	131987974942.7	1.8317122E15	132862981165.5
Urban Local	19	681062.5	1.7744	1208477.4	2374882	3314752.4	159358969215.1	2.2118376E15	160687575174.3
	0	0	0	0	0	0	0	0	0
Total Running Emissions	0	0	0	0	8733035.8	21829718.8	1059857908144	1.4698593E16	1066940019790
Total Non-Running Emissions	0	0	0	0	12328330.9	26533070	18172680085.1	252669210000000	26974821875.2
Total Emissions including Non-Running	0	0	0	0	21061366.7	48362788.7	1078030588229.1	1.49512626E16	1093914841665.4
	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
HPMS VEHICLE DESCRIPTION	0	0	0	0	0	0	0	0	0
Motorcycles	10	34349.6	0	35084.8	22484.2	17149.4	4781287601.2	66529948380718	4807302088.4
Private Auto	20	3645341	0	3595987.2	3614975.4	13474619.5	568228380781.5	7.9063083E15	572354297879.8
Light Trucks	30	1410641.1	0	1342861.4	2304623.9	7477704.1	306078828048	4.2542008E15	308705865492.9
Buses	40	5653.4	0	4693.9	62850.4	5027.1	2893865825.9	39489307067742	2897170976.8
Single Unit Trucks	50	163625	0	146067.2	1067120.7	822802.8	74254871386.3	1.0190361E15	74512482454.3
Combination Unit Trucks	60	117453.7	0	95902.5	1660981.1	32415.9	103620674501.2	1.4130288E15	103662900898

#### **Output Network**

#### CO₂EQ distribution for Bay county in Florida



#### AQPP Help



#### Next Step

# AQPP user interface tool will be available as an option in Cube program.

		11117	Cube (Licen	sed to Citilabs)					$\langle \rangle \rangle$
M Matrix P Pilot TB Trnbuild	An AD Analyst Analyst Drive	Av L Avenue Land	Cluster Car Other	g go go AQPF SYNO TPP2	Air Quality	Post Processor nro Import Matrix to US FTA User Ber	er Check		
	Control Data > Database	Print File Network Summary Report		Output directory	PP   US FTA   /: * <b>{OUT</b> e / Selec	Jser Benefit Matrix to Voya	Output Dire	ctory	vill be caver
				Code 12001 12003 12007 12009	Na Ala Bak Bra Bra	Paste Delete Select All Scenario Keys	Value: C:\Use	T_DIR}	Data\Roami Bay
34				12011 12013 12015	Browar Calhou Charlot	d n to	{RUN_TI {LOADE {SKIMM	TLE} D_NETWORK} Bay County - G	HG 2010