An Integrated Framework for Modeling Freight Mode Choice

By

Xiaoyu Zhu (University of Maryland) Sabyasachee Mishra (University of Memphis) Subrat Mahapatra (Maryland State Highway Administration) Timothy Welch (University of Maryland)

> 14th TRB Planning Applications Conference May 5-9, 2013 Columbus, Ohio

Background

- Growing awareness of freight system
- Thrust at federal, state and local level
- Maryland's freight transportation is estimated
 - To grow about 105% by 2035
 - 1.4 billion of total tons
 - 4.98 trillion of \$ value transfer (108% increase from 2006)
- Sustainability of MD corridors to meet the future demand

National Peak Period Congestion-2007 (Freight) 00 2 2 2 2 **Recurring Peak-Period Congestion** Uncongested Congested Highly Congested

National Peak Period Congestion-2040 (Freight) 13 -**Recurring Peak-Period Congestion** Uncongested Congested Highly Congested

Why Freight Mode Choice?

- Freight demand by mode varies by
 - Type of commodity
 - Value and size of commodity
- Travel characteristics near distribution centers
- Finer level geometric detail
- Detailed Origin-Destination analysis within Maryland
- Land use impact on freight flows
- LOS identification and project selection

Objectives

• Develop methods to forecast freight shipments

- o By rail
- o By highway
 - × Number of trucks
 - × Time of day
- Other
 - × Multimodal
 - × Other

Capable of responding to external changes

- Fuel price
- New distribution centers
- o Tolling
- Freight corridors

Mode Choice Factors

- Develop methods to forecast freight shipments
 - o By rail
 - By highway
 - × Number of trucks
 - × Time of day
 - Other
 - × Multimodal
 - × Other

Capable of responding to external changes

- Fuel price
- New distribution centers
- o Tolling
- Freight corridors

Data

• Available from Freight Analysis Framework (FAF)

- o Annual Macroscopic North American Freight Flow
- o Tons, Value, Distance, Commodity, Mode
- Derive large scale long distance movements

Not available from FAF

- o Through trips (route)
- Short distance internal trips
- o Cost (fuel price, time)
- o Just in time delivery

Freight in Maryland

	Within MD	Leaving MD	Arriving in MD	Through (Northeast - Southeast)
Weight (million of tons)	135	84	91	52
Value (billion\$)	92	113	169	177
Value/Weight (Thousand \$/ton)	0.7	1.3	1.9	3.4

Northeast: CT, ME, MA, NH, NJ, NY, RI,VT Southeast: FL, GA, NC, SC

Proposed Model Structure

		From	То			From	То	То		From	То	
1	Live animals fish	3	3	15	Coal	3	3	29	Printed prods	1	1	
2	Cereal grains	3	3	16	Crude petroleum	3	3	30	Textiles leather	2	2	
3	Other ag prods	3	3	17	Gasoline	3	3	31	Nonmetal min. prods	2	3	
4	Animal feed	3	3	18	Fuel oils	3	3	32	Base metals	2	2	
5	Meat seafood	3	3	19	Coal-n.e.c.	2	2	33	Articles-base metal	1	2	
6	Milled grain prods	3	3	20	Basic chemicals	1	2	34	Machinery	2	2	
7	Other foodstuffs	3	3	21	Pharmaceuticals	2	1	35	Electronics	2	2	
8	Alcoholic beverages	3	3	22	Fertilizers	2	3	36	Motorized vehicles	2	1	
9	Tobacco prods	3	3	23	Chemical prods	1	1	37	Transport equip	2	3	
10	Building stone	3	3	24	Plastics rubber	2	1	38	Precision instruments	1	2	
11	Natural sands	3	3	25	Logs	3	2	39	Furniture	3	2	
12	Gravel	3	3	26	Wood prods	3	2	40	Misc. mfg. prods	2	2	
13	Nonmetallic minerals	2	2	27	Newsprint paper	1	3	41	Waste scrap	3	3	
14	Metallic ores	1	3	28	Paper articles	2	2	43	Mixed freight	2	2	

Leaving MD Com 1 Arriving in MD Com 2 Within MD Com 3

4 models for different OD and Commodities

Proposed Method

- Aggregated analysis
- Using land use as the factor
- Logistic Regression Models

$$logit(P_{ij}) = X_{ij}\beta_j + \varepsilon_{ij}$$

- *P_{ij}* is the probability of <u>Truck Tonnage</u> share
- *X_{ij}* is the Info of <u>distribution centers</u>, <u>highway/railway coverage</u>, <u>transportation/warehousing employment</u>.

Proposed Model Structure

Summation of all group 1 tonnage from MD

	1	2	•••	123
•••				
•••				
48	W _{48.1}	W _{48.2}		W _{48.123}
49	W _{49.1}			
50	<i>w</i> _{50.1}			W _{50.123}
•••				

Summation of all group 1 <u>truck</u> tonnage from MD

$$log\left(\frac{\frac{I_{o.d}}{W_{o.d}}}{1-\frac{T_{o.d}}{W_{o.d}}}\right) = X_{ij}\beta_j + \varepsilon_{ij}$$
$$=\beta_0 + \beta_1 Dist + \beta_2 (DC_0) + \beta_3 (DC_D) + \beta_4 (Cov_0) + \beta_5 (Cov_D) + \beta_6 (Emp_0) + \beta_7 (Emp_D) \dots + \varepsilon_{ij}$$

Parameter		Estimates	95% CI Lower	95% CI Upper	Wald Chi- Square	Sig.
(Intercept)	X0	.431	-2.580	3.442	.079	.779
Highway distance	X1	002	003	001	19.315	.000
# Origin zone truck center	X2	2.463	.417	4.508	5.569	.018
# Origin zone rail center	X3	164	272	055	8.766	.003
# Destination zone truck center	X4	.414	.108	.720	7.018	.008
# Destination zone rail center	X5	024	056	.007	2.265	.132
# Destination zone port center	X6	.286	075	.647	2.412	.120
# Destination zone Trans employment (10K)	X7	133	310	.044	2.160	.142

- The share of truck $P_t = \frac{\exp(y)}{1 + \exp(y)}$
- y = 0.431 0.002X1 + 2.463X2 0.164X3 + 0.414X4 0.024X5 + 0.286X6 0.133X7

Parameter	Estimate s	
(Intercept)	X0	.431
Highway distance	X1	002
# Origin zone truck center	X2	2.463
# Origin zone rail center	X3	164
# Destination zone truck center	X4	.414
# Destination zone rail center	X5	024
# Destination zone port center	X6	.286
# Destination zone Trans employment (10K)	X7	133

- For this group of commodities, the total truck share from MD is less than 40%.
- The truck percentage share decrease with longer distance between the Origin and Destination zone.
- The number of truck-truck centers in MD influence the truck share dramatically.
- More number of rail centers in MD reduce the truck share.
- Truck share is high to the destination zone with more truck and port oriented centers and less rail centers, and less transportation/warehousing employment.

- The total group 1 commodity shipped from Baltimore (MD MSA) to Denver (CO CSA)
 - $P_t = 62.3\%$
- If there is one more port related distribution center in Baltimore
 - The truck share does not change.
- If there is one more truck center in Baltimore

• $P_t = 95.1\%$

• If there is one more rail center in Baltimore

• $P_t = 58.3\%$

• If the Destination zone is Jacksonville (FL MSA)

- Distance reduces from 1,591 m to 756m.
- Employment reduces from 5.17 to 3.22 10K.
- $P_t = 91.9\%$
- With one more port-truck distribution center in Baltimore
 - The truck share does not change.
- If there is one more truck center in Baltimore
 - $P_t = 99.3\%$
- If there is one more rail center in Baltimore
 - $P_t = 90.6\%$

Parameter		Estimates	95% CI Lower	95% CI Upper	Wald Chi- Square	Sig.
(Intercept)	X0	.689	542	1.920	1.204	.273
Highway distance	X1	002	003	002	65.168	.000
# Destination zone rail center	X2	022	044	.000	3.676	.055
Destination zone Principal arterial percentage out of total highway and rail mileage	Х3	3.660	.822	6.498	6.388	.011
# Destination zone Trans employment (10K)	X4	.112	.013	.210	4.956	.026

• For this group of commodities, the truck share from MD ranges from 40% to 80%.

- The characteristics in Maryland do not impact the truck share.
- The truck share only depends on the destination zone.
- The truck is preferred to the zones closer to Maryland, with less rail distribution centers, higher Principal Arterial roadway and more transportation related employments.

Parameter		Estimat es	95% CI Lower	95% CI Upper	Wald Chi- Square	Sig.
(Intercept)	X0	2.720	2.019	3.421	57.850	0.000
Highway distance	X1	-0.001	-0.001	0.000	3.981	0.046
# Origin zone port related distribution center	X2	-0.158	-0.373	0.058	2.060	0.151
Destination zone rail center percentage	X3	-2.020	-3.246	-0.794	10.431	0.001
# Origin zone Trans employment (10K)	X4	0.040	-0.023	0.102	1.565	0.211

- The percentage of rail oriented distribution centers in Maryland is negative related with the truck share.
- The truck share also depends on the origin zone # port related centers, transportation employments.
- The truck is preferred from the zones closer to Maryland, with less port distribution centers, and more transportation related employments.

Parameter		Estimates	95% CI Lower	95% CI Upper	Wald Chi- Square	Sig.
(Intercept)	X0	3.055	1.351	4.760	12.340	.000
Highway distance	X1	002	003	002	54.749	.000
Origin zone percentage of rail miles out of total highway and rail mileage	X2	-3.576	-7.274	.123	3.590	.058
# Origin zone Trans employment (10K)	Х3	.074	.000	.147	3.882	.049

- The characteristics in Maryland do not impact the truck share.
- The truck is preferred from the zones closer to Maryland, with more transportation related employments.

Choice Model for Rail

			95% Wald Confidence		Hypothesis
	Parameter	В	Interval		Test
					Wald Chi-
			Lower	Upper	Square
Grount	(Intercept)	5.525	2.933	8.117	17.46
Group1	Truck_dist	-0.001	-0.002	0	6.533
from MD	D_Port	0.29	-0.002	0.582	3.783
from MD	D_PAHwy_P	-12.539	-17.422	-7.655	25.324
Croups	(Intercept)	3.822	-0.862	8.506	2.557
Commodity	Truck_dist	-0.002	-0.003	-0.001	23.284
Commodity from MD	D_truck	-0.228	-0.381	-0.075	8.536
	D_PAHwy_P	-14.252	-20.424	-8.08	20.486
	(Intercept)	-2.339	-4.357	-0.32	5.158
Group1	Truck_dist	-0.001	-0.002	0	6.233
Commodity to	O_truck	-0.276	-0.461	-0.091	8.558
MD	O_rail	0.155	0.101	0.209	31.586
	D_TC_P	-6.958	-12.129	-1.787	6.954
	(Intercept)	7.195	4.799	9.592	34.62
	Truck_dist	0	-0.001	-6.50E-05	5.541
Group2	O_truck	0.127	0.008	0.246	4.349
Commodity to	O_rail	0.044	0.019	0.069	11.756
MD	D_TC_P	-2.173	-3.488	-0.858	10.495
	D_RC_P	-5.759	-8.147	-3.372	22.361
	O_PAHwy_P	-8.946	-12.704	-5.188	21.774

Sensitivity Analysis Results

	Parameter		48	49	50
Group 1 from MD	# Origin zone truck center	X2	1.2314	1.209	1.0761
	# Origin zone rail center	X3	0.9763	0.9783	0.9904
	# Destination zone truck center	X4	1.0545	1.0498	1.0213
	# Destination zone rail center	X5	0.9966	0.9969	0.9986
	# Destination zone port center	X6	1.0384	1.0351	1.0152
	# Destination zone Trans employment (10K)	X7	0.9809	0.9825	0.9923
	# Destination zone rail center	X2	0.9930	0.9931	0.9928
	Destination zone principal				
Group 2 from MD	arterial percentage out of total	X3	1.0115	1.0114	1.0120
	highway and rail mileage (1%)				
	# Destination zone Trans employment (10K)	X4	1.0352	1.0349	1.0366
	# Origin zone port related distribution center	X2	0.9474	0.9713	0.9413
Group 1 to MD	Destination zone rail center percentage (1%)	X3	0.9934	0.9964	0.9926
	# Origin zone Trans employment (10K)	X4	1.0131	1.0069	1.0147
Group 2 to MD	Origin zone percentage of rail				
	miles out of total highway and	X2	0.9883	0.9883	0.9878
	rall mileage (1%)				
	# Origin zone Trans employment (10K)	X3	1.0242	1.0240	1.0252

Summary

- For Group 1 commodities, number of truck and rail centers will influence the percentage of tonnage carried by truck.
- For Group 2 commodities, the percentage of truck tonnage only depends on the characteristics of the opposite zones.
- The distance is a dominant variables related to truck share.
- The principal arterial highway and rail coverage in the opposite zones are related to truck share for group 2, not group 1.
- Number of transportation/warehousing employments in the opposite zones is significant.
- Variables such as highway and rail coverage in MD and employment in MD is not related.

Potential Applications

- Forecast of Future Freight Demand
- Expansion of the Port of Baltimore
 - Expansion of Panama Canal and Northwest passage
- Prevent Infrastructure Bottlenecks
 - Intermodal Facilities
 - o Truck Distribution Centers
- Economic Analysis
 - Project selection
 - Dollars lost by not providing infrastructure

))
