An Integrated Framework for Modeling Freight Mode Choice

By
Xiaoyu Zhu (University of Maryland)
Sabyasachee Mishra (University of Memphis)
Subrat Mahapatra (Maryland State Highway Administration) Timothy Welch (University of Maryland)

$14^{\text {th }}$ TRB Planning Applications Conference
May 5-9, 2013
Columbus, Ohio

Background

- Growing awareness of freight system
- Thrust at federal, state and local level
- Maryland's freight transportation is estimated
- To grow about 105% by 2035
- 1.4 billion of total tons
- 4.98 trillion of $\$$ value transfer (108% increase from 2006)
- Sustainability of MD corridors to meet the future demand

National Peak Period Congestion-2007 (Freight)

National Peak Period Congestion-2040 (Freight)

Why Freight Mode Choice?

- Freight demand by mode varies by
- Type of commodity
- Value and size of commodity
- Travel characteristics near distribution centers
- Finer level geometric detail
- Detailed Origin-Destination analysis within Maryland
- Land use impact on freight flows
- LOS identification and project selection

Objectives

- Develop methods to forecast freight shipments
- By rail
- By highway
* Number of trucks
* Time of day
- Other
* Multimodal

Other

- Capable of responding to external changes
- Fuel price
- New distribution centers
- Tolling
- Freight corridors

Mode Choice Factors

- Develop methods to forecast freight shipments
- By rail
- By highway
* Number of trucks
* Time of day
- Other
. Multimodal
Other
- Capable of responding to external changes
- Fuel price
- New distribution centers
- Tolling
- Freight corridors

Literature Review Structure

Data

- Available from Freight Analysis Framework (FAF)
- Annual Macroscopic North American Freight Flow
- Tons, Value, Distance, Commodity, Mode
- Derive large scale long distance movements
- Not available from FAF
- Through trips (route)
- Short distance internal trips
- Cost (fuel price, time)
- Just in time delivery

FAF Zones

131 FAF Zones 123 nationwide 8 international

3 MD FAF Zones
\checkmark Baltimore-MD
\checkmark Washington-MD
\checkmark Remainder-MD

Freight in Maryland

	Within MD	Leaving MDD	Arriving in MID	Through (Northeast Southeast)
Weight (million of tons)	135	84	91	52
Value (billion\$)	92	113	169	177
Value/Weight (Thousand \$/ton)	0.7	1.3	1.9	3.4

Northeast: CT, ME, MA, NH, NJ, NY, RI,VT
Southeast: FL, GA, NC, SC

External and Internal Trips By Mode

Commodities by Truck(From MD)

Lower Truck Percentage (<40\%)
Medium Truck Percentage (41\%-80\%)
High Truck Percentage (>80\%)

Commodities by Truck (To MD)

Lower Truck Percentage (<40\%)
Medium Truck Percentage (41\%-80\%)
High Truck Percentage (>80\%)

Commodities by Truck (Within MD)

Lower Truck Percentage (<40\%)
Medium Truck Percentage (41\%-80\%)
High Truck Percentage (>80\%)

Proposed Model Structure

		From	To	\cdots		From	To			From	To
1	Live animals fish	3	3	15	Coal	3	3	29	Printed prods	1	1
2	Cereal grains	3	3	16	Crude petroleum	3	3	30	Textiles leather	2	2
3	Other ag prods	3	3	17	Gasoline	3	3	31	Nonmetal min. prods	2	3
4	Animal feed	3	3	18	Fuel oils	3	3	32	Base metals	2	2
5	Meat seafood	3	3	19	Coal-n.e.c.	2	2	33	Articles-base metal	1	2
6	Milled grain prods	3	3	20	Basic chemicals	1	2	34	Machinery	2	2
7	Other foodstuffs	3	3	21	Pharmaceuticals	2	1	35	Electronics	2	2
8	Alcoholic beverages	3	3	22	Fertilizers	2	3	36	Motorized vehicles	2	1
9	Tobacco prods	3	3	23	Chemical prods	1	1	37	Transport equip	2	3
10	Building stone	3	3	24	Plastics rubber	2	1	38	Precision instruments	1	2
11	Natural sands	3	3	25	Logs	3	2	39	Furniture	3	2
12	Gravel	3	3	26	Wood prods	3	2	40	Misc. mfg. prods	2	2
13	Nonmetallic minerals	2	2	27	Newsprint paper	1	3	41	Waste scrap	3	3
14	Metallic ores	1	3	28	Paper articles	2	2	43	Mixed freight	2	2

Leaving MD

Arriving in MD

Within MD

Com 2
Com 3

4 models for different OD and Commodities

Proposed Method

- Aggregated analysis
- Using land use as the factor
- Logistic Regression Models

$$
\operatorname{logit}\left(P_{i j}\right)=X_{i j} \beta_{j}+\varepsilon_{i j}
$$

- $P_{i j}$ is the probability of Truck Tonnage share
- $X_{i j}$ is the Info of distribution centers, highway/railway coverage, transportation/warehousing employment.

Proposed Model Structure

Summation of all group 1 tonnage from MD

	1	2	\ldots	123
\ldots				
\ldots				
48	$w_{48.1}$	$w_{48.2}$		$w_{48.123}$
49	$w_{49.1}$			
50	$w_{50.1}$			$w_{50.123}$
\ldots				

Summation of all group 1 truck tonnage from MD

	1	2	\ldots	123
\ldots				
\ldots				
48	$T_{48.1}$	$T_{48.2}$		$T_{48.123}$
49	$T_{49.1}$			
50	$T_{50.1}$			$T_{50.123}$
\ldots				

$\log \left(\frac{\frac{T_{o . d}}{W_{o . d}}}{1-\frac{T_{o . d}}{W_{o . d}}}\right)=X_{i j} \beta_{j}+\varepsilon_{i j}$
$=\beta_{0}+\beta_{1}$ Dist $+\beta_{2}\left(D C_{O}\right)+\beta_{3}\left(D C_{D}\right)+\beta_{4}\left(\operatorname{Cov}_{O}\right)+\beta_{5}\left(\operatorname{Cov}_{D}\right)+$ $\beta_{6}\left(E m p_{O}\right)+\beta_{7}\left(E m p_{D}\right) \ldots+\varepsilon_{i j}$

Example: From MD group 1

Parameter		Estimates	$95 \% \mathrm{CI}$ Lower	$95 \% \mathrm{CI}$ Upper	Wald ChiSquare	Sig.
(Intercept)	X0	. 431	-2.580	3.442	. 079	. 779
Highway distance	X1	-. 002	-.003	-. 001	19.315	. 000
\# Origin zone truck center	X2	2.463	. 417	4.508	5.569	. 018
\# Origin zone rail center	X3	-. 164	-. 272	-. 055	8.766	. 003
\# Destination zone truck center	X4	. 414	. 108	. 720	7.018	. 008
\# Destination zone rail center	X5	-. 024	-. 056	. 007	2.265	. 132
\# Destination zone port center	X6	. 286	-. 075	. 647	2.412	. 120
\# Destination zone Trans employment (10K)	X7	-. 133	-. 310	. 044	2.160	. 142

- The share of truck $P_{t}=\frac{\exp (y)}{1+\exp (y)}$
- $\mathrm{y}=0.431-0.002 \mathrm{X} 1+2.463 X 2-0.164 X 3+0.414 X 4-0.024 X 5+0.286 X 6-$ $0.133 X 7$

Example: From MD group1

Parameter		Estimate s
(Intercept)	X0	. 431
Highway distance	X1	-. 002
\# Origin zone truck center	X2	2.463
\# Origin zone rail center	X3	-. 164
\# Destination zone truck center	X4	. 414
\# Destination zone rail center	X5	-. 024
\# Destination zone port center	X6	. 286
\# Destination zone Trans employment (10K)	X7	-. 133

- For this group of commodities, the total truck share from MD is less than 40%.
- The truck percentage share decrease with longer distance between the Origin and Destination zone.
- The number of truck-truck centers in MD influence the truck share dramatically.
- More number of rail centers in MD reduce the truck share.
- Truck share is high to the destination zone with more truck and port oriented centers and less rail centers, and less transportation/warehousing employment.

Example: From MD group1

- The total group 1 commodity shipped from Baltimore (MD MSA) to Denver (CO CSA)
- $P_{t}=62.3 \%$
- If there is one more port related distribution center in Baltimore
- The truck share does not change.
- If there is one more truck center in Baltimore
- $P_{t}=95.1 \%$
- If there is one more rail center in Baltimore
- $\underline{P}_{t}=58.3 \%$

Example: From MD group1

- If the Destination zone is Jacksonville (FL MSA)
- Distance reduces from $1,591 \mathrm{~m}$ to 756 m .
- Employment reduces from 5.17 to 3.22 10K.
- $P_{t}=91.9 \%$
- With one more port-truck distribution center in Baltimore
- The truck share does not change.
- If there is one more truck center in Baltimore
- $P_{t}=99.3 \%$
- If there is one more rail center in Baltimore
- $P_{t}=90.6 \%$

Example: From MD group2

Parameter		Estimates	$95 \% \mathrm{CI}$ Lower	$95 \% \text { CI }$ Upper	Wald Chi- Square	Sig.
(Intercept)	X0	. 689	-. 542	1.920	1.204	. 273
Highway distance	X1	-. 002	-. 003	-. 002	65.168	. 000
\# Destination zone rail center	X2	-. 022	-. 044	. 000	3.676	. 055
Destination zone Principal arterial percentage out of total highway and rail mileage	X3	3.660	. 822	6.498	6.388	. 011
\# Destination zone Trans employment (10K)	X4	. 112	. 013	. 210	4.956	. 026

- For this group of commodities, the truck share from MD ranges from 40% to 80%.
- The characteristics in Maryland do not impact the truck share.
- The truck share only depends on the destination zone.
- The truck is preferred to the zones closer to Maryland, with less rail distribution centers, higher Principal Arterial roadway and more transportation related employments.

Example: To MD group1

Parameter		Estimat es	95\% CI Lower	95\% CI Upper	Wald Chi- Square	Sig.
(Intercept)	X0	2.720	2.019	3.421	57.850	0.000
Highway distance	X1	-0.001	-0.001	0.000	3.981	0.046
\# Origin zone port related distribution	X2	-0.158	-0.373	0.058	2.060	0.151
center						

- The percentage of rail oriented distribution centers in Maryland is negative related with the truck share.
- The truck share also depends on the origin zone \# port related centers, transportation employments.
- The truck is preferred from the zones closer to Maryland, with less port distribution centers, and more transportation related employments.

Example: To MD group2

Parameter		Estimates	95% CI Lower	95\% CI Upper	Wald Chi- Square	Sig.
(Intercept)	$\mathrm{X0}$	3.055	1.351	4.760	12.340	.000
Highway distance	X 1	-.002	-.003	-.002	54.749	.000
Ho						
Origin zone percentage of rail miles out of total highway and rail mileage	X 2	-3.576	-7.274	.123	3.590	.058
\# Origin zone Trans employment (10K)	X 3	.074	.000	.147	3.882	.049

- The characteristics in Maryland do not impact the truck share.
- The truck is preferred from the zones closer to Maryland, with more transportation related employments.

Choice Model for Rail

	Parameter	B	95\% Wald Confidence Interval		Hypothesis Test
			Lower	Upper	Wald Chi- Square
	(Intercept)	5.525	2.933	8.117	17.46
	Truck_dist	-0.001	-0.002	0	6.533
	D_Port	0.29	-0.002	0.582	3.783
	D_PAHwy_P	-12.539	-17.422	-7.655	25.324
	(Intercept)	3.822	-0.862	8.506	2.557
	Truck_dist	-0.002	-0.003	-0.001	23.284
	D_truck	-0.228	-0.381	-0.075	8.536
	D_PAHwy_P	-14.252	-20.424	-8.08	20.486
	(Intercept)	-2.339	-4.357	-0.32	5.158
Group1	Truck_dist	-0.001	-0.002	0	6.233
Commodity to	O_truck	-0.276	-0.461	-0.091	8.558
MD	O_rail	0.155	0.101	0.209	31.586
	D_TC_P	-6.958	-12.129	-1.787	6.954
	(Intercept)	7.195	4.799	9.592	34.62
	Truck_dist	0	-0.001	-6.50E-05	5.541
Group2	O_truck	0.127	0.008	0.246	4.349
Commodity to	O_rail	0.044	0.019	0.069	11.756
MD	D_TC_P	-2.173	-3.488	-0.858	10.495
	D_RC_P	-5.759	-8.147	-3.372	22.361
	O_PAHwy_P	-8.946	-12.704	-5.188	21.774

Sensitivity Analysis Results

	Parameter	48	49	50
Group 1 from MD	\# Origin zone truck center X 2	1.2314	1.209	1.0761
	\# Origin zone rail center X 3	0.9763	0.9783	0.9904
	\# Destination zone truck center X 4	1.0545	1.0498	1.0213
	\# Destination zone rail center X 5	0.9966	0.9969	0.9986
	\# Destination zone port center X6	1.0384	1.0351	1.0152
	\# Destination zone employment (10K)	0.9809	0.9825	0.9923
Group 2 from MD	\# Destination zone rail center X2	0.9930	0.9931	0.9928
	Destination zone principal arterial percentage out of total highway and rail mileage (1\%)	1.0115	1.0114	1.0120
	\# Destination zone Trans ${ }_{\text {X }}^{4}$ employment (10K)	1.0352	1.0349	1.0366
Group 1 to MD	\# Origin zone port related distribution center	0.9474	0.9713	0.9413
	Destination zone rail center percentage (1\%)	0.9934	0.9964	0.9926
	$\begin{aligned} & \text { \# Origin zone Trans employment } \mathrm{X}_{4} \\ & (10 \mathrm{~K}) \end{aligned}$	1.0131	1.0069	1.0147
Group 2 to MD	Origin zone percentage of rail miles out of total highway and X2 rail mileage (1\%)	0.9883	0.9883	0.9878
	$\begin{aligned} & \text { \# Origin zone Trans employment } X_{3} \\ & (10 \mathrm{~K}) \end{aligned}$	1.0242	1.0240	1.0252

Summary

- For Group 1 commodities, number of truck and rail centers will influence the percentage of tonnage carried by truck.
- For Group 2 commodities, the percentage of truck tonnage only depends on the characteristics of the opposite zones.
- The distance is a dominant variables related to truck share.
- The principal arterial highway and rail coverage in the opposite zones are related to truck share for group 2, not group 1.
- Number of transportation/warehousing employments in the opposite zones is significant.
- Variables such as highway and rail coverage in MD and employment in MD is not related.

Potential Applications

- Forecast of Future Freight Demand
- Expansion of the Port of Baltimore
- Expansion of Panama Canal and Northwest passage
- Prevent Infrastructure Bottlenecks
- Intermodal Facilities
- Truck Distribution Centers
- Economic Analysis
- Project selection
- Dollars lost by not providing infrastructure

Thank You!

