ODME Application in the Indiana Statewide Travel Demand Model

Transportation Planning Applications Conference

CDM Smith INDOT

May 6 , 2013

Presentation Overview

- Development Team
- Indiana Statewide Model (ISTDM6) Overview
- American Transportation Research Institute (ATRI) Data
- Traffic Counts
- Origin Destination Matrix Estimation (ODME)
 Application
- Model Validation
- Conclusions

ISTDM6 Model Development Team

Indiana DOT

- Stephen Smith
- Roy Nunnally
- CDM Smith
 - Rob Bostrom
 - Liza Amar
 - RSG, Inc
 - Vince Bernardin
- The Corradino Group
 - Dean Munn

ISTDM6 Overview

ATRI Data

ATRI Data

- Processed data products
 - avoid disclosure
 - multiple sources
 - date, time, coordinates
- <u>Eight week sample</u> of trucks
- 16 million records = 305,000 trucks
- Screening out locations
 - truck stops / rest areas
- Filter dataset
 - continuous moving records
- Weighted data for seasonality
- Scaled for daily trips

Traffic Counts

• AADT

- ATR
- WIM
- IFORMS
- TRADAS

Classification Counts

- Auto
- 4-Tire Commercial Vehicle
- Single Unit (SU) Trucks
- Multi-Unit (MU) Trucks
- Count Statistics
 - Functional Classification
 - Area Type

ODME Application - Motivation

- Improve accuracy
- Maintain existing model structure
 - National Commodity Flow
 - "Non-Freight" trucks based on Quick Response
 Freight Manual (QRFM)
 - ODME Adjustments
- Use ATRI data to derive OD tuck-trip tables for the ISTDM6

ODME Application – Sensitivity

Count Sensitivity

- Locations (I-69 vicinity)
- Outliers
- Weights
- Seed Matrix Sensitivity
 - What does seed matrix represent?
 - Application Sensitivity
 - Static Assignment with preload vs. Multi-Modal Multi-Class Assignment (MMA)
 - ODME iterations
 - No Count Paths

Area	Count Weight
Within Indiana	1.00
Fringe Area	0.25
External Stations	1.00

ODME Application – Sensitivity

- Auto and truck input seed matrices
- What does the ATRI data represent?
 - Long distance commodity flow trucks (Freight)
 - Multi-unit local trucks
 - Single unit local trucks
 - Mix of the above

What percentage of these does the sample represent?

nt?				ATRI % of	Freight % of Truck
	Area Type	ATRI Volume	Truck Count	Count	Loading
	Urban	712,260	2,450,755	29.1%	29.0%
	Suburban	132,835	383,219	34.7%	31.8%
	Rural	1,705,215	4,617,369	36.9%	36.5%

ODME Application – Sensitivity

- ATRI = Freight
- Root Mean Square Error (RMSE) on Trip Tables
- Percent Difference
- District Comparison

ATRI Reflects	RMSE	% Seed/ODME
ATRI	5.81	42.0
All Trucks	6.24	41.0
MU + Freight	3.62	14.9
Freight	3.26	-9.8

ODME Application – Results

- MMA ODME procedure
- Tighter convergence criteria improved the RMSE
 - 200 iterations & 0.0001 relative gap for 7 ODME iterations
- Weighting counts by area
- Auto = auto + external + 4-tire commercial vehicle
- Truck = freight (ATRI) + SU truck + MU truck

Mode	Input SEED	Output ODME	% Difference
Auto	41,033,462	42,819,951	4.2%
Truck	2,524,549	2,976,922	15.2%

ODME Application – Implementation

- Previous model ODME adjustment based on the additive approach
 - (ODME Base Model) + Model
- ODME adjustment considerations
 - additive approach: (ODME Base Model) + Model
 - multiplicative approach: (ODME / Base Model) * Model
 - averaging of additive and multiplicative approaches
- ODME adjustments applied to auto and truck
 Including 4-tire commercial vehicles and externals

Model Validation – Base Year Comparison

• 2010 updated ISTDM model compared with 2006 model

Auto + Truck	2006 Model	2010 Model			
Observations	19,875*	7,912			
RMSE	43.0%	25.9%			
% Error 1.1% -0.3%					
*Based on the highway network because unknown from validation report					

2010 updated ISTDM truck model compared with 2006

truck model

Truck	2006 Model	2010 Model
Observations	6,689	4,200
RMSE	69.3%	38.4%
% Error	5.4%	-4.6%

Model Validation - Link Based Results

- Volume % Error
- RMSE
- VMT % Error

				Volume %		VMT %
Functional Class	Obs.	Sum Count	Sum Flow	Error	RMSE (%)	Error
R. Interstates (1)	103	2,834,641	2,747,723	-3.1	10.3	-4.2
R. Prin. Arterials (2)	1,026	8,897,883	9,063,922	1.9	16.8	2.5
R. Minor Arterials (6)	1,334	7,972,920	8,060,792	1.1	21.7	2.0
R. Major Collectors (7)	2,756	9,554,756	9,522,050	-0.3	27.8	0.4
R. Minor Collectors (8)	29	149,577	153,079	2.3	27.5	7.7
R. Local Roads (9)	9	27,492	26,538	-3.5	40.6	-27.4
U. Interstates (11)	176	12,445,283	11,754,250	-5.6	14.6	-5.1
U. Freeways (12)	98	2,091,657	2,072,229	-0.9	21.4	-3.4
U. Prin. Arterials (14)	1,843	29,826,794	30,098,971	0.9	20.4	0.4
U. Minor Arterials (16)	493	5,015,258	5,090,145	1.5	28.2	0.3
U. Collectors (17)	43	390,877	379,005	-3.0	29.8	-2.4
U. Local Roads (19)	2	11,868	13,329	12.3	23.2	6.5
Total	7,912	79,219,005	78,982,032	-0.3	25.9	-1.5

Model Validation – Forecast Year Comparison

- Auto trips growth consistent with household/population growth
- Truck trips growth consistent with FAF growth

		Model Area			
Trip Purpose	State of Indiana				(including fringe area)
	2010 Trips	2035 Trips	Difference	Growth	Growth
Auto	13,661,832	15,449,007	1,787,176	13%	16%
QRFM Truck	835,636	920,798	85,162	10%	10%
4TComVeh	1,181,192	1,357,568	176,376	15%	17%
Freight Truck	16,883	22,472	5,589	33%	64%
Total	15,695,543	17,749,846	2,054,303	13%	16%

Indiana-to-Indiana	2010	2035	Growth
Model VMT	31,305,758	45,125,617	44%
FAF (KTons)	275,783	384,766	40%

Conclusions

- Accurate count data is critical for success of the ODME application.
- Interstate counts, especially in rural areas were most sensitive to the ODME results.
- Weights by facility type did not improve ODME results as much as weights by area.
- MMA ODME with tighter convergence improved ODME results more than single class assignment with preload.
- Implementation using additive approach is necessary to avoid skewed forecasts using multiplicative approach, even with special bounds.

Conclusions

- Found ATRI data representing freight improved Indiana truck model's performance.
- ODME application allowed for reasonable model forecasts which may not have been obtainable without the adjustments.
- ISTDM6 is acceptable for planning purposes and its use in traffic forecasting studies.
 - I-69 EIS Studies
 - I-70 Feasibility Studies
 - Other Corridor Studies
 - Toll Studies
 - Non-MPO Studies

Questions?

Liza Amar, AICP, EI CDM Smith amarer@cdmsmith.com 713-423-7421