Long Distance Passive O-D Data for Statewide Models: An Implementation Plan

> Ed Hard Byron Chigoy Lisa Green, Ph.D



**2019 TRB Planning Applications Conference** 

Portland, OR. June 4, 2019 Research Sponsored by ADOT





## Using Passive Long-Distance O-D Data Considerations

- Long-Distance (LD) is  $\geq$  50 miles
- Components of LD travel needed for statewide model
- Point-in-time evaluation of O-D sources: cell, LBS, GPS
- Case studies, lessons-learned from other DOTS
- Costs of acquiring and developing LD O-D data
- Ability to process, analyze, store Big Data



# **LD Trip Components and Sources**

|                                   | Source                  |           |  |  |  |  |  |  |
|-----------------------------------|-------------------------|-----------|--|--|--|--|--|--|
| Irip Stratification               | Primary                 | Secondary |  |  |  |  |  |  |
| I-I non-work passenger, >50 miles |                         |           |  |  |  |  |  |  |
| I-E/E-I passenger                 | LBS                     | GPS       |  |  |  |  |  |  |
| E-E passenger                     |                         |           |  |  |  |  |  |  |
| I-I/E-I/I-E special generator     | Combined<br>LBS and GPS | N/A       |  |  |  |  |  |  |
| I-I truck/freight, >50 miles      |                         |           |  |  |  |  |  |  |
| I-E/E-I truck/freight             | GPS                     | ATRI      |  |  |  |  |  |  |
| E-E truck/freight                 |                         |           |  |  |  |  |  |  |



# **Implementation Plan**

For Acquiring and Developing Passive O-D Data

Task 1: Planning and Preparation
Task 2: Develop TAZ Structure for LBS Data Capture
Task 3: Determine Attributes and Acquire LBS Data
Task 4: Assess Options and Acquire GPS Data
Task 5: Process and Develop O-D Data



#### **Task 1:** Planning and Preparation

- Utilize a Technical Advisory Committee (TAC)
  - Reps for DOT, MPOs, other stakeholders
  - Provide technical review, guidance, feedback
- Preview and assess key technical decisions
  - Changes needed to TAZs, model stream, etc.
  - Choices, options in data acquisition
- Get update on O-D sources, products and pricing prior to data acquisition



#### Task 2: Develop TAZ Structure and Network





# Tasks 3 and 4: Assess Attributes and Acquire Data

- Various forms, attributes, options in LBS and GPS data: some required, some optional
- TAC should assess those required versus desired
- Key attributes/options
  - internal and external zones options: I-I, I-E/E-I, E-E
  - day aggregations: average weekday, weekend, others
  - time-of-day periods: AM Peak, PM Peak, 24-hour



# **Key Attributes Needed in Data**

- Options with I-I, E-I/I-E, and E-E trips
- Daily long distance trip filter (for  $\geq$  50 miles)
- Average weekday travel based on 24-hour period
- Resident class attributes with subcategories
- Optional attributes to consider
  - weekend data
  - seasonal data
  - device home locations



#### **Key Recommendations**

for Statewide Passive LD O-D Data

- Obtain update on O-D sources and products prior to acquiring data
- Acquire LBS data as matrices with LD filter for passenger vehicles
- Use GPS data with waypoints for trucks
   Task 5:
- Conflate data to statewide TAZ and network
- Expand data using IPF and ODME



# **Implementation Plan Overview**

|                                             | <b>Recommended Implementation Plan</b>                         | Time Period (months) |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|---------------------------------------------|----------------------------------------------------------------|----------------------|---|---|---|---|---|---|-----------------------|---|----|----|----|----|----|
| Та                                          | sk 1: Planning and Preparation                                 | 1                    | 2 | 3 | 4 | 5 | 6 | 7 | 8                     | 9 | 10 | 11 | 12 | 13 | 14 |
|                                             | Convene and consult a TAC throughout implementation            |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|                                             | Preview and assess key technical decisions                     |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|                                             | Update information on O-D sources, products, and pricing       |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|                                             | Assess needs for traffic counts and Bluetooth                  |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
| Та                                          | Task 2: Develop TAZ Structure and Network for LBS Data Capture |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|                                             | Assess LBS coverage to inform TAZ development                  |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|                                             | Aggregate internal TAZs based on Census tracts                 |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|                                             | Develop TAZs for special generators                            |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|                                             | Redesign external zones and RAZs                               |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|                                             | Consider special TAZs for Bluetooth benchmarking               |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
| Та                                          | Task 3: Determine Attributes and Acquire LBS Data              |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|                                             | Determine required and optional LBS data attributes            |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|                                             | Consider additional attributes that may be useful              |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|                                             | Consider small samples to inform primary sample                |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
| Task 4: Assess Options and Acquire GPS Data |                                                                |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|                                             | Select form of GPS data                                        |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|                                             | Acquire GPS data                                               |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
| Та                                          | sk 5: Process and Develop O-D Data                             |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|                                             | Process and store GPS data                                     |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|                                             | Perform GPS geospatial conflation                              |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |
|                                             | Process LBS data                                               |                      |   |   |   |   |   |   | 1<br>1<br>1<br>1<br>1 |   |    |    |    |    |    |
|                                             | Expand data                                                    |                      |   |   |   |   |   |   |                       |   |    |    |    |    |    |



# Special Thanks and Acknowledgements



Keith Killough, Director Transportation Analysis Dianne Kresich, Research Center Manager Baloka Belezamo, Senior Modeler



Tomas Guerra, Principal Jeff Jenq, Ph.D Director



### **Questions**?

Ed Hard <u>e-hard@tti.tamu.edu</u> (979) 317-2592

Byron Chigoy <u>b-chigoy@ttimail.tamu.edu</u> (828) 675-5304





# **Final Report**

#### Optimizing Technology for Collecting Long-Distance Data

#### **ADOT SPR-744**

Arizona Department of Transportation In cooperation with U.S. Department of Transportation Federal Highway Administration

https://www.azdot.gov/docs/defaultsource/research-reports/spr744 Optimizing Technology for Collecting Arizona Long-Distance Travel Data



Arizona Department of Transportation Research Center

ADOT

**SPR-744** 



APRIL 2019