An Exploratory Analysis of PAS Characteristics in Solving the Static Deterministic User Equilibrium Traffic Assignment Problem on a Large Scale Urban Network

By
Aroon Aungsuyanon
Bin Ran
University of Wisconsin-Madison
and
\section*{David Boyce}
Northwestern University

For

the 13th TRB National Transportation Planning Applications Conference

$$
\begin{gathered}
\text { May 8-12, } 2011 \\
\text { Reno, Nevada }
\end{gathered}
$$

Overview

- Motivation
- Proportionality condition
- General structure of TAPAS algorithm
- Fundamental principles of Paired Alternative Segments
- Basic characteristics of a test network
- Solution characteristics of PASs
- at aggregated levels
- at disaggregated levels
- Contributions of PASs to forming equilibrium route patterns
- Summary findings of PAS solutions

Motivation

- Static deterministic user equilibrium (UE) traffic assignment has long been one of the most intensively applied tools utilized by transportation planners.
- The standard UE formulation provides a unique solution for total link flows, but not for route flows. However, route flows are often used in practice at various levels of aggregation.
- Bar-Gera (2010) proposed a new algorithm, Traffic Assignment by Paired Alternative Segments (TAPAS) to solve UE traffic assignments efficiently, while determining route flows uniquely by adding a condition of proportionality.
- Determining Pairs of Alternative Segments (PAS) is the key to the success of TAPAS. Focusing on PASs leads to fast convergence, consistent route sets, and unique route flows.
- Although successfully implemented at various scales, several characteristics of PASs, especially for large-scale urban road networks, have not been adequately explored and revealed.

Proportionality Condition

Same proportions apply to all travelers facing a choice between a pair of alternative segments

Consider the pair of segments [1,2,4] and [1,3,4].
AD segment proportions should be $1 / 4$ and $3 / 4$.

Proportionality Condition

Same proportions apply to all travelers facing a choice between a pair of alternative segments

Consider the pair of segments [1,2,4] and [1,3,4]. BD segment proportions should also be $1 / 4$ and $3 / 4$.

For travelers from B to D the proportion is $15 /(15+45)=1 / 4$.

Algorithm Convergence on the Chicago Regional Network

The general structure of TAPAS algorithm

Find initial solution using AON assignment

Repeat iteratively:
For every origin
Remove all cyclic flows
Find tree of least cost routes
For every link used by the origin which is not part of the tree
If there is an existing effective PAS
Make sure the origin is listed as relevant Else

Construct a new PAS
Choose a random subset of active PASs
Shift flow within each chosen PAS
2) Proportionality Adjustment

For every active PAS
Check if it should be eliminated Perform flow shift to equilibrate costs
Redistribute flows between origins
by the assumption of proportionality
$\uparrow \rightarrow$ Flow distribution between origins
\rightarrow Practically equivalent to MEUE route flow solutions
\rightarrow Route flow uniqueness
(i.e. consistent choices of route flow solutions)
Final proportionality iterations:
For every active PAS
Redistribute flows between origins
by the assumption of proportionality

Fundamental principles of PAS

- Consider only Pairs of (distinct) Alternative Segments (PAS).
- Every PAS consists of two sequences of links connecting a pair of nodes, each called "the distinguishing component or (alternative) segment".
- Every PAS has a set of relevant origin(s), or a set of relevant destination(s).
- Every PAS has one originating node, the diverge node, and one terminating node, the merge node.
- A PAS can take any shape as long as the segment travel times are precisely equal.
- For every PAS, the routes taken from any origin to a diverge node and from a merge node to any destination are not at issue.
- Any PAS can be the distinguishing component for many pairs of routes.
- Equilibrium routes between OD pairs may have no or one or more PAS(s).

Basic characteristics of the Chicago regional network

17 Districts / 1,790 Zones

Physical Characteristics of Chicago Regional Zone System

Mode-Drigin-Destination Model:
$d_{m p q}=A_{p} B_{q} \exp \left(-\mu * c_{m p q}\right)$
Where $A_{p}, B_{q}=$ Balancing Factor
$\mu=$ Cost Sensitivity Parameters
$c_{m p q}=$ Mode-Drigin-Destination
Level of Service/Cost

12,982 Nodes/ 39,018 Links/ 27,050.2 mi

Physical Characteristics of Chicago Regional Road Network

General characteristics of three OD trip matrices

$\begin{array}{r} \text { Cost } \\ \text { Sensitivity } \end{array}$	Totalnumber ofO/D Zones	Number of OD pairs				Total number of OD pairs	OD flows		$\begin{array}{r} \text { Total } \\ \text { OD flows } \end{array}$
		Interzonal		Intrazonal			Interzonal	Intrazonal	
		with flow	without flow	with flow	without flow		Interzonal	Intrazonar	
0.20	1,790	3,168,206	34,104	1,771	19	3,204,100	1,349,081.1	80,820.0	1,429,901.2
		(98.9\%)	(1.0\%)	(0.1\%)	(0.0\%)	(100\%)	(94.4\%)	(5.6\%)	(100\%)
0.10	1,790	3,168,206	34,104	1,771	19	3,204,100	1,269,957.0	54,916.8	1,324,873.8
		(98.9\%)	(1.0\%)	(0.1\%)	(0.0\%)	(100\%)	(95.9\%)	(4.1\%)	(100\%)
0.05	1,790	3,168,206	34,104	1,771	19	3,204,100	1,171,166.1	41,884.9	1,213,051.0
		(98.9\%)	(1.0\%)	(0.1\%)	(0.0\%)	(100\%)	(96.6\%)	(3.4\%)	(100\%)

Distribution of Interzonal OD Flows

Aggregated characteristics of PAS solutions-1

A RED link is an UNUSED link.

A GREEN link is a USED link that is a PART of a PAS.
A BLUE link is a USED link that is NOT PART of any PAS.

Aggregated characteristics of PAS solutions-2

Cost sensitivity	Mean route travel time (minutes)	Number of PASs	Total length of PASs (miles)		PAS coverage (\%) (a)	$\begin{aligned} & \hline \text { Length per } \\ & \text { PAS } \\ & \text { (miles) } \end{aligned}$	Number of links per PAS	Number of origins per PAS	Number of equilibrium routes
			Overlaps included	Overlaps excluded					
0.20	52.6	5,617	57,342	8,7634	32.4	10.2	19.9	105.2	8,397,772
0.10	60.3	11,702	153,857	11,403	42.2	13.2	27.1	100.6	19,121,834
0.05	80.1	22,500	407,264	13,693	50.6	18.1	35.5	103.3	198,087,738

(a) (total length of all non-overlapping links on all PASs)/(total length of all links over a network) $\times 100$

Distribution of Vehicle-Miles of Travel of PAS solutions
\square Cost Sensitivity-0.20 \square Cost Sensitivity-0.10 ■Cost Sensitivity-0.05

Used Links, which are part(s) of PAS(s) Used Links, which are not part(s) of any PAS(s)

Aggregated characteristics of PAS solutions-3

 Distribution of Link Length of PAS solutions

Distribution of Number of Links of PAS solutions

Disaggregated characteristics of PAS solutions - 1

- All PASs must perfectly conform to the PAS definition. - No alternative segment is crossed at a node.

PASs with segment CROSSING(S)

Disaggregated characteristics of PAS solutions - 2
Number of PASs versus Number of Links per PAS

Disaggregated characteristics of PAS solutions - 3

Number of PASs versus Total Link Length of PAS classified by Interval

Disaggregate characteristics of PAS solutions - 4

Number of PASs versus Number of Origins per PAS

Disaggregate characteristics of PAS solutions - 5

Location and characteristics of PASs with maximum length by trip matrix

CS-0.20		
Length1: 58.8	Cost:	71.01
Length2: 43.5	Flow1:	0.024
\#Links: 145	Flow2: 0.073	
\#Origins: 5	Prop1: 0.249	
\#Destinations: 1	Prop2: 0.751	

CS-0.10		
Length1: 85.2	Cost: 97.14	
Length2: 83.0	Flow1: 0.113	
\#Links: 120	Flow2: 0.003	
\#Origins: 2	Prop1: 0.975	
\#Destinations: 1	Prop2: 0.025	

CS-0.05
Length1: 68.7 Cost: 96.95
Length2: 64.1 Flow1: 0.00001
\#Links: 174 Flow2: 0.00144
\#Origins: $1 \quad$ Prop1: 0.007
\#Destinations: 1 Prop2: 0.993

Total Link Length of PAS $=102.3 \mathrm{mi}$

Total Link Length of PAS $=168.2 \mathrm{mi}$

Total Link Length of PAS $=132.9 \mathrm{mi}$

Contributions of PASs to formation of equilibrium route patterns (Aggregation by an Origin) Origins with Maximum Number of PASs on CS-0.20

CS-0.20 512 PASs	
130.67 vph	
3,378 routes(total)	55.79 min
855	routes(single)

from Origin 1608

from Origin 1608

from Origin 1608

Contributions of PASs to formation of equilibrium route patterns

 (Aggregation by an Origin) Origins with Maximum Number of PASs on CS-0.10| CS-0.20 | |
| :--- | :--- |
| $478 \quad$ PASs | 822.70 vph |
| 2,604 routes(total) | 39.92 min |
| 1,459 routes(single) | |

CS-0.10

1,058 PASs $\quad 851.59 \mathrm{vph}$
6,293 routes(total)
887 routes(single)

from Origin 183

from Origin 183

```
CS-0.05
```

2,034 PASs 826.56 vph 180,227routes(total) 64.86 min 363 routes(single)

from Origin 183

Contributions of PASs in formulation of equilibrium route patterns

(Aggregation by an Origin)

Origins with Maximum Number of PASs on CS-0.05

CS-0.20		
409 PASs	160.52 vph	
2,970 routes(total)	44.47 min	
1,111 routes(single)		

$\underline{\text { CS- } 0.10}$			
889	PASs $\quad 164.84 \mathrm{vph}$		
7,019 routes(total)	48.32 min		
1,035 routes(single)			

CS- 0.05	
2,472	
PASs $\quad 169.54 \mathrm{vph}$	
792,630	
routes(total) 62.26 min	
$270 \quad$ routes(single)	

from Origin 3

from Origin 3

Contributions of PASs in formulation of equilibrium route patterns
(Disaggregation by an OD pair)
OD Pairs with Maximum Total Link Length of PAS on CS-0.20

Contributions of PASs in formulation of equilibrium route patterns
(Disaggregation by an OD pair)
OD Pairs with Maximum Total Link Length of PAS on CS-0.10

OD Pair 824-1753
OD Pair 824-1753
OD Pair 824-1753

Contributions of PASs in formulation of equilibrium route patterns
(Disaggregation by an OD pair)
OD Pairs with Maximum Total Link Length of PAS on CS-0.05

OD Pair 300-1480
OD Pair 300-1480
OD Pair 300-1480

Summary of findings for PAS solutions

The following findings are expected to help guide transportation professionals and practitioners in understanding the properties of PASs for solving traffic assignments with unique route flows:

- No active PASs has a segment crossing at a node.
- All active PASs consist of physically unique links.
- Simple PASs formed by three or four links are prevalent.
- Active PASs which are short and local are commonplace.
- Occurrences of PASs which are extremely long are rare.
- Active PASs with small numbers of origins occur most frequently.
- All active PASs relevant to a specific origin are part(s) of a corresponding tree of minimum travel cost routes.

Questions for future research

This research seeks to understand characteristics of user equilibrium solutions to large scale urban traffic networks. Further research is needed on:

- Networks from other regions
- Assignment of multiple classes
- Different trip matrices
- More complete generalized link cost functions including distance term and tolls

